terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Plastic debris at vines: carriers of pollutants in the environment?

Plastic debris at vines: carriers of pollutants in the environment?

Abstract

Modern agriculture employs large amounts of plastics, such as mulching and greenhouse films, thermal covers, plant protection tubes and tying tape. The latter two types are very common in viticulture. Guard tubes are employed to protect young vines from mechanic and atmospheric damage, whilst polymeric tying tape has replaced natural-origin materials to hold the canopy of vines. Both materials are made on synthetic polymers, which include a range of additives to improve their environmental stability remaining in the environment of vineyards for years. During this time, they are exposed to the range of pesticides (fungicides, insecticides and in a lesser extend herbicides) applied to vines. Tying tape fits within the category of meso-plastics, difficult to recover due to their abundance and limited size. After pruning, most of the tying tapes end in the soil of vineyards. Both types of materials are potential sources of microplastics during aging.

Depending on the affinity between pesticides and plastics, the latter can act as reservoirs of this kind of pollutants, contributing to their delayed release in the environment of vineyards, and/or serving as carriers of pesticides into the trophic web, and/or into surface waters due to wind and run-off transport. This presentation deals with the characterization of plastic debris collected from vineyards. Thus, the presence of pesticides residues in this matrix were determined, including a comparison with their levels in soil, and the study of the sorption/desorption processes of pesticides in new and aged samples of different types of vineyard plastics.

Residues of pesticides in plastic litter, collected from conventionally managed vineyards, varied from 100 ng g-1 to more than 10000 ng g-1. The range of compounds remaining in this matrix included not only moderately lipophilic pesticides, but also medium polarity species, i.e. metalaxyl, carbendazim and dimethomorph. The strength of interaction between pesticides and the two main types of plastic residues identified in vineyards (PE and PP) was mostly controlled by the degree of polymer weathering, which was characterized by FTIR in the total attenuated reflectance mode (ATR).

Acknowledgements: M.C. acknowledges a FPI contract to the Spanish Ministry of Science and Innovation. Funds received from Xunta de Galicia (project ED431C2021/06) are acknowledged.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

I. Rodríguez1*, M. Cobo-Golpe1, G.R. Gutierrez1, J. Álvarez1, V. Fernández1, P. Blanco2, M. Ramil1

1 Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS – Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R/Constantino Candeira SN, 15782 Santiago de Compostela, Spain
2 Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Ponte San Clodio s/n, 32428, Leiro-Ourense

Contact the author*

Keywords

plastic litter, vineyards, pesticides, occurrence, desorption

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Quantifying water use diversity across grapevine rootstock-scion combinations

Vines require proper light levels, temperature, and water availability, and climate change is modifying these factors, hampering yield and quality. Despite the large diversity of rootstocks, varieties, and clones, we still lack knowledge of their combined effects and potential role in a warmer and dryer future. Therefore, we aim to characterize some of the existing diversity of rootstocks and genotypes and their interaction at the eco-physiological level, combining stomatal conductance (gs) and chlorophyll a fluorescence analysis.

Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Brandy is a spirit drink made from “wine spirit” (<86% Alcohol by Volume – ABV; high levels of congeners and they are mainly less volatile than ethanol), it may be blended with a “wine distillate” (<94.8%ABV; low levels of congeners and these are mainly more volatile than ethanol), as long as that distillate does not exceed a maximum of 50% of the alcoholic content of the finished product[1]. Brandy must be aged for at least 6 months in oak casks with <1000L of capacity. During ageing, changes occur in colour, flavour, and aroma that improve the quality of the original distillate.

Selecting green cover species in the under-trellis zone of Lower Austrian vineyards

The under-trellis zone of vineyards is a sensitive area through which vines cover a significant portion of their nutrient and water needs. Mechanical and chemical methods are applied to suppress competing and tall-growing weeds to ensure optimal vine growth conditions. In addition to higher operating costs and depending on the soil conditions, these practices might lead to a long-term reduction in soil fertility and biodiversity. The presented study aims to analyse the suitability and interspecies competition of a selected green cover mixture of five local herbaceous species as potential green cover mixture in the under-trellis area of Lower Austrian vineyards.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the whole plant. Rootstocks are an important way of adapting to environmental conditions while conserving the typical features of scion varieties. We can exploit the large diversity of rootstocks used worldwide to aid this adaptation. The aim of this study was to characterise rootstock regulation of scion mineral status and its relation with scion development.

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1]. O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2]. Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one.