terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Plastic debris at vines: carriers of pollutants in the environment?

Plastic debris at vines: carriers of pollutants in the environment?

Abstract

Modern agriculture employs large amounts of plastics, such as mulching and greenhouse films, thermal covers, plant protection tubes and tying tape. The latter two types are very common in viticulture. Guard tubes are employed to protect young vines from mechanic and atmospheric damage, whilst polymeric tying tape has replaced natural-origin materials to hold the canopy of vines. Both materials are made on synthetic polymers, which include a range of additives to improve their environmental stability remaining in the environment of vineyards for years. During this time, they are exposed to the range of pesticides (fungicides, insecticides and in a lesser extend herbicides) applied to vines. Tying tape fits within the category of meso-plastics, difficult to recover due to their abundance and limited size. After pruning, most of the tying tapes end in the soil of vineyards. Both types of materials are potential sources of microplastics during aging.

Depending on the affinity between pesticides and plastics, the latter can act as reservoirs of this kind of pollutants, contributing to their delayed release in the environment of vineyards, and/or serving as carriers of pesticides into the trophic web, and/or into surface waters due to wind and run-off transport. This presentation deals with the characterization of plastic debris collected from vineyards. Thus, the presence of pesticides residues in this matrix were determined, including a comparison with their levels in soil, and the study of the sorption/desorption processes of pesticides in new and aged samples of different types of vineyard plastics.

Residues of pesticides in plastic litter, collected from conventionally managed vineyards, varied from 100 ng g-1 to more than 10000 ng g-1. The range of compounds remaining in this matrix included not only moderately lipophilic pesticides, but also medium polarity species, i.e. metalaxyl, carbendazim and dimethomorph. The strength of interaction between pesticides and the two main types of plastic residues identified in vineyards (PE and PP) was mostly controlled by the degree of polymer weathering, which was characterized by FTIR in the total attenuated reflectance mode (ATR).

Acknowledgements: M.C. acknowledges a FPI contract to the Spanish Ministry of Science and Innovation. Funds received from Xunta de Galicia (project ED431C2021/06) are acknowledged.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

I. Rodríguez1*, M. Cobo-Golpe1, G.R. Gutierrez1, J. Álvarez1, V. Fernández1, P. Blanco2, M. Ramil1

1 Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS – Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R/Constantino Candeira SN, 15782 Santiago de Compostela, Spain
2 Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Ponte San Clodio s/n, 32428, Leiro-Ourense

Contact the author*

Keywords

plastic litter, vineyards, pesticides, occurrence, desorption

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Crown procyanidin quantification in red wines, rosé wines and Port wines

Condensed grape tannins play a major role in the organoleptic properties and quality of red wine. Recently, a new sub-family of macrocyclic condensed tannins has been identified in red wine and named “crown tannins”. Indeed, the first compound of the family identified and characterised by NMR was the crown procyanidin tetramer which is composed of a macrocyclic structure composed of four (-)-epicatechins link together by B-type interflavanoid linkage in the following an alternative sequences of C4-C8 and C4-C6 linkage. The 3D structure of this unusual crown procyanidin family reveals a central cavity in the molecule [1].

Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Mannoproteins are released at the end of alcoholic fermentation due to yeast autolysis [1]. It has been described a positive effect of these molecules on lactic acid bacteria growth [2]. The main objective of this work was the characterization of different mannoproteins extracted from active dry yeast (ADY) and the assessment of their effect on Oenococcus oeni and malolactic fermentation (MLF).

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.

Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

The wine closure industry is mainly divided into three categories: screw caps, synthetic closures, and cork-based closures. Among this latter, microagglomerated cork stoppers treated with supercritical CO2 are now widely used, especially to avoid cork taint contaminations[1]. They are designed with cork granules obtained from cork offcuts of the punching process during the natural cork stoppers production. A previous study[2] showed that these stoppers released fewer polyphenols in 12 % (v/v) hydroalcoholic solution than natural cork stoppers.

Quantifying water use diversity across grapevine rootstock-scion combinations

Vines require proper light levels, temperature, and water availability, and climate change is modifying these factors, hampering yield and quality. Despite the large diversity of rootstocks, varieties, and clones, we still lack knowledge of their combined effects and potential role in a warmer and dryer future. Therefore, we aim to characterize some of the existing diversity of rootstocks and genotypes and their interaction at the eco-physiological level, combining stomatal conductance (gs) and chlorophyll a fluorescence analysis.