terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

Abstract

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection. This method consists to inoculate at the pre-fermentation stage, a microorganism able to inhibit the growth of the negative indigenous flora. The genus Metschnikowia is well know to have this bioprotection property, especially M. pulcherrima and M. fructicola, but the mechanisms remain poorly studied. This project aims to study the bioprotection abilities of 50 strains of Metschnikowia, including 16 species, against Gluconobacter oxydansand Brettanomyces bruxellensis, both known to lead to defects in organoleptic properties of the wine. To investigate the bioprotection effect, grape juice was inoculated with Metschnikowia sp. and G. oxydans or Metschnikowia sp. And B. bruxellensis. The capacity of Metschnikowia to inhibit G. oxydans growth was evaluated for 7 days by plate counting and by digital PCR for B. bruxellensis. In parallel, Metschnikowia species are inoculated in synthetic grape must to quantify the production of the acid pulcherriminic precursor. This acid is considered as a way for the yeast to compete for iron in the medium, and thus as a method of bioprotection. The results show a diversity in the bioprotection effect towards the spoilage microorganisms and in the production of the acid pulcherriminic precursor. The bioprotection could be an alternative in the sustainable pre-fermentative management of winemaking process.

Acknowledgements: We were grateful to Région Occitanie and INRAE MICA department for funding this project.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Julie Aragno1, Angèle Thiriet2, Pascale Fernandez-Valle1, Cécile Grondin2, Jean-Luc Legras1,2, Carole Camarasa1, Audrey Bloem1

1 UMR SPO, Université Montpellier, INRAE, Institut Agro, Montpellier, France
2 CIRM Levures, UMR SPO, Montpellier

Contact the author*

Keywords

alcoholic fermentation, bioprotection, Metschnikowia sp., diversity

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Chemical and microbiological evaluation of Ribeiro wines (NW Spain)

Wine produced under Designation of Origin (DOP) Ribeiro, the oldest DOP in Galicia (NW Spain), are elaborated using local grape cultivars, grown at the valleys of Miño, Avia and Arnoia rivers. The landscape formed by slopes and terraces and the peculiar climate of continental character, softened by the proximity of Atlantic Ocean, make it an area of excellent aptitude for vine cultivation. In addition, small-scale farming and the use of traditional techniques for vineyard management provide a great diversity to Ribeiro wines. This study presents the evaluation of red and white wines (bottled or bulk wines) from DOP Ribeiro, produced between years 2018-2022.

Metabolomic profiling of heat-stressed grape berries 

The projected rise in mean air temperatures together with the frequency, intensity, and length of heat waves in many wine-growing regions worldwide will deeply impact grape berry development and quality. Several studies have been conducted and a large set of molecular data was produced to better understand the impact of high temperatures on grape berry development and metabolism[1]. According to these data, it is highly likely that the metabolomic dynamics could be strongly modulated by heat stress (HS).

The use of δ13C as an indicator of water use efficiency for the selection of drought tolerant grapevine varieties

In the context of climate change with increasing evaporative demand, understanding the water use behavior of different grapevine cultivars is of critical importance. Carbon isotope discrimination (δ13C) measurements in wine provide a precise and integrated assessment of the water status of the vines during the sugar accumulation period in grape berries. When collected over multiple vintages on different cultivars, δ13C measurements can also provide insights into the effects of genotype on water use efficiency.

Comparison of the effects of hormone- and natural-based elicitors on key metabolic pathways in cv. Tempranillo

One of the most important effects of climate change in wine-growing areas is the advance of phenological stages, especially concerning early berry ripening. In the hottest seasons, this results in a lack of synchrony between sugar and phenolic ripeness. In order to cope with this fact, a general effort is being made by researchers and growers aiming at delaying ripening through different strategies. One of the proposed approaches is the application of elicitors. This study aims to assess the effect at the transcriptomic level of application of three elicitors (Vitalfit, Fruitel, and Protone) in Tempranillo.

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).