terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

Abstract

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection. This method consists to inoculate at the pre-fermentation stage, a microorganism able to inhibit the growth of the negative indigenous flora. The genus Metschnikowia is well know to have this bioprotection property, especially M. pulcherrima and M. fructicola, but the mechanisms remain poorly studied. This project aims to study the bioprotection abilities of 50 strains of Metschnikowia, including 16 species, against Gluconobacter oxydansand Brettanomyces bruxellensis, both known to lead to defects in organoleptic properties of the wine. To investigate the bioprotection effect, grape juice was inoculated with Metschnikowia sp. and G. oxydans or Metschnikowia sp. And B. bruxellensis. The capacity of Metschnikowia to inhibit G. oxydans growth was evaluated for 7 days by plate counting and by digital PCR for B. bruxellensis. In parallel, Metschnikowia species are inoculated in synthetic grape must to quantify the production of the acid pulcherriminic precursor. This acid is considered as a way for the yeast to compete for iron in the medium, and thus as a method of bioprotection. The results show a diversity in the bioprotection effect towards the spoilage microorganisms and in the production of the acid pulcherriminic precursor. The bioprotection could be an alternative in the sustainable pre-fermentative management of winemaking process.

Acknowledgements: We were grateful to Région Occitanie and INRAE MICA department for funding this project.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Julie Aragno1, Angèle Thiriet2, Pascale Fernandez-Valle1, Cécile Grondin2, Jean-Luc Legras1,2, Carole Camarasa1, Audrey Bloem1

1 UMR SPO, Université Montpellier, INRAE, Institut Agro, Montpellier, France
2 CIRM Levures, UMR SPO, Montpellier

Contact the author*

Keywords

alcoholic fermentation, bioprotection, Metschnikowia sp., diversity

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Differential gene expression and novel gene models in 110 Richter uncovered through RNA Sequencing of roots under stress

The appearance of the Phylloxera pest in the 19th century in Europe caused dramatical damages in grapevine diversity. To mitigate these losses, grapevine growers resorted to using crosses of different Vitis species, such as 110 Richter (110R) (V. berlandieri x V. rupestris), which has been invaluable for studying adaptations to stress responses in vineyards. Recently, a high quality chromosome scale assembly of 110R was released, but the available gene models were predicted without using as evidence transcriptional sequences obtained from roots, that are crucial organs in rootstock, and they may express certain genes exclusively. Therefore, we employed RNA sequencing reads of 110R roots under different stress conditions to predict new gene models in each haplotype of 110R under different stresses.

The tolerance of grapevine rootstocks to water deficit is related to root morphology and xylem anatomy traits 

Climate change is altering water balances, thereby compromising water availability for crops. In grapevine, the strategic selection of genotypes more tolerant to soil water deficit can improve the resilience of the vineyard under this scenario. Previous studies demonstrated that root anatomical and morphological traits determine vine performance under water deficit conditions. Therefore, 13 ungrafted rootstock genotypes, 6 commercial (420 A, 41 B, Evex 13-5, Fercal, 140 Ru y 110 R), and 7 from new breeding programs (RG2, RG3, RG4, RG7, RG8, RG9 and RM2) were evaluated in pots during 2021 and 2022.

Evaluation of terroir suitability for vine cultivation in new areas using geographic multi-criteria decision support

Based on historical vine cultivation, the recent development of wine production in Drama wine region (Greece) has led to vine cultivation expansion of white and red varieties. The current cultivation of 500 ha of vineyards is expected to increase in the coming years. Natural terroir units (NTU) have been designed recently to support the production of high quality wines in the region [1]. The aim of this work is to evaluate the relevancy of the proposed NTUs regarding their suitability to produce wines of specific sensorial identity, and to provide guidelines for correct site selection for the expanding wine industry of the region.

Grapevine adaptation to drought and resistance to Neofusicoccum parvum, causal agent of Botryosphaeria dieback

The sustainability of viticulture in response to climate change has been addressed mainly considering agronomic impacts, such as water management and diseases, either separately or together.
In grapevines, there is strong evidence that different genotypes respond differently to biotic and abiotic stresses. A screening was conducted on various local cultivars in response to drought and Neofusicoum parvum infection aiming to evaluate their susceptibility to abiotic stress and resistance to fungal diseases.

Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Plant roots fulfil important functions as they are responsible for the acquisition of water and nutrients, for anchorage and stability, for interaction with symbionts and, in some cases, for the storage of carbohydrates. These functions are associated with the Root System Architecture (RSA, i.e. the form and the spatial arrangement of the roots in the soil). The RSA results from several biological processes (elongation, ramification, mortality…) genetically determined but with high structural plasticity.