terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

Abstract

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection. This method consists to inoculate at the pre-fermentation stage, a microorganism able to inhibit the growth of the negative indigenous flora. The genus Metschnikowia is well know to have this bioprotection property, especially M. pulcherrima and M. fructicola, but the mechanisms remain poorly studied. This project aims to study the bioprotection abilities of 50 strains of Metschnikowia, including 16 species, against Gluconobacter oxydansand Brettanomyces bruxellensis, both known to lead to defects in organoleptic properties of the wine. To investigate the bioprotection effect, grape juice was inoculated with Metschnikowia sp. and G. oxydans or Metschnikowia sp. And B. bruxellensis. The capacity of Metschnikowia to inhibit G. oxydans growth was evaluated for 7 days by plate counting and by digital PCR for B. bruxellensis. In parallel, Metschnikowia species are inoculated in synthetic grape must to quantify the production of the acid pulcherriminic precursor. This acid is considered as a way for the yeast to compete for iron in the medium, and thus as a method of bioprotection. The results show a diversity in the bioprotection effect towards the spoilage microorganisms and in the production of the acid pulcherriminic precursor. The bioprotection could be an alternative in the sustainable pre-fermentative management of winemaking process.

Acknowledgements: We were grateful to Région Occitanie and INRAE MICA department for funding this project.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Julie Aragno1, Angèle Thiriet2, Pascale Fernandez-Valle1, Cécile Grondin2, Jean-Luc Legras1,2, Carole Camarasa1, Audrey Bloem1

1 UMR SPO, Université Montpellier, INRAE, Institut Agro, Montpellier, France
2 CIRM Levures, UMR SPO, Montpellier

Contact the author*

Keywords

alcoholic fermentation, bioprotection, Metschnikowia sp., diversity

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Differential gene expression and novel gene models in 110 Richter uncovered through RNA Sequencing of roots under stress

The appearance of the Phylloxera pest in the 19th century in Europe caused dramatical damages in grapevine diversity. To mitigate these losses, grapevine growers resorted to using crosses of different Vitis species, such as 110 Richter (110R) (V. berlandieri x V. rupestris), which has been invaluable for studying adaptations to stress responses in vineyards. Recently, a high quality chromosome scale assembly of 110R was released, but the available gene models were predicted without using as evidence transcriptional sequences obtained from roots, that are crucial organs in rootstock, and they may express certain genes exclusively. Therefore, we employed RNA sequencing reads of 110R roots under different stress conditions to predict new gene models in each haplotype of 110R under different stresses.

Effect of ultraviolet B radiation on pathogenic molds of grapes

The fungicidal effect of UV-C radiation (100-280 nm wavelength) is well known, but its applicability for the control of pathogenic molds of grapes is conditioned by its effect on the host and by the risks inherent in its handling[1].
As an alternative, the effect in vitro of UV-B radiation (280-315 nm) on the main pathogenic molds of grapes has been studied: Botrytis cinerea, Aspergillus niger, Penicillium expansum and Rhizopus stolonifer.

New tool to evaluate color modifications during oxygen consumption in white and red wines

Measuring the effect of oxygen consumption on the color of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine can consume without significantly altering its color. The changes produced in wine after being exposed to high oxygen concentrations have been studied by different authors, but in all cases the wine has been analyzed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen[1,2].

Chemical and microbiological evaluation of Ribeiro wines (NW Spain)

Wine produced under Designation of Origin (DOP) Ribeiro, the oldest DOP in Galicia (NW Spain), are elaborated using local grape cultivars, grown at the valleys of Miño, Avia and Arnoia rivers. The landscape formed by slopes and terraces and the peculiar climate of continental character, softened by the proximity of Atlantic Ocean, make it an area of excellent aptitude for vine cultivation. In addition, small-scale farming and the use of traditional techniques for vineyard management provide a great diversity to Ribeiro wines. This study presents the evaluation of red and white wines (bottled or bulk wines) from DOP Ribeiro, produced between years 2018-2022.

Volatile composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Cabernet Sauvignon is one of the most cultivated grape varieties worldwide being grown in different environmental conditions due to its excellent adaptability. Volatile compounds deeply contribute to the sensory properties of wines therefore to wine quality. The aim of this work was to compare the aroma profile of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain, from the vintage 2022. In addition, the volatile composition of the Cabernet Sauvignon Portuguese wines from three vintages was evaluated.