terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Assessment of plant water consumption rates under climate change conditions through an automated modular platform

Assessment of plant water consumption rates under climate change conditions through an automated modular platform

Abstract

The impact of climate change is noticeable in the present weather, making water scarcity the most immediate mediator reducing the performance and viability of crops, including grapevine (Vitis vinifera L.). The present study developed a system (hardware, firmware, and software) for the determination of plant water use through changes in weight through a period. The aim is to measure the differences in grapevine water consumption in response to climate change (+4oC and 700 ppm) under controlled conditions. The results reveal a correlation between daily plant consumption rates and reference evapotranspiration (ETo). However, plant water consumption had much strongercorrelations with leaf area and substrate available water content. Interestingly, an increase in 4oC and 700 ppm of CO2 did not result in higher water consumption rates when plants had similar leaf areas. This is supported by the lack of differences in discrete leaf transpiration (E) rates determined throughout the same period. Stomatal conductance was significantly lower in +4oC and 700 ppm plants, which agrees with the reported effect of CO2 in previous studies. Although further investigation will be carried out to determine the impact of each of the climate change factors on daily water consumption rates, photosynthetic acclimation to elevated CO2 may be a key factor for the adaptation of crops to water scarcity.

Keywords: Climate change, water stress, temperature, elevated CO2, evapotranspiration, stomatal regulation.

Acknowledgements: Thanks to A. Urdiain, M. Oyarzun & H. Santesteban for technical support. Ministerio de Ciencia e Innovación (Gobierno de España; Ref. PID2020-118337RB-IOO) and “ANDIA talento senior 2021” (Gobierno de Navarra) funded the research.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Johann Martinez-Lüscher 1*, Inmaculada Pascual, Nieves Goicoechea

1Universidad de Navarra-BIOMA, Plant Stress Physiology Group (Associated Unit to CSIC, EEAD, Zaragoza). Irunlarrea 1, 31008, Pamplona (Spain)

Contact the author*

Keywords

climate change, water stress, temperature, elevated CO2, evapotranspiration, stomatal regulation

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Influence of different Lachancea thermotolerans strains in wine acidity

Wine acidity is a parameter of great importance that influences different quality factors of the product such as biological stability or organoleptic characteristics. In the current context of climate change, which gives rise to wines with higher levels of ethanol and lower acidity, the biological acidification with yeast species such as Lachancea thermotolerans could be a solution.
In this work, the effect of the inoculation of different L. thermotolerans on the acidity of wine was studied.

Optimization of the ripening time of new varieties descendants of Monastrell

Given the impact of climate change on viticulture in the Region of Murcia, this paper attempts to expose the possibility of using genetic improvement as a dilemma that allows access to new descendant varieties of the autochthonous variety Monastrell crossed with varieties such as Syrah and Cabernet. Sauvignon, thus obtaining hybrids (Gebas and Myrtia). In it, the chromatic parameters and the phenolic profile of the new varieties will be compared with those obtained by the Monastrell variety at two moments during maturation (12 and 14 º Baumé), to check if the results would allow earlier harvests in these new varieties thus avoiding the decoupling between phenolic and technological maturity, while improving the quality of grapes and wines.

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition.

Sensory profile of wines obtained from disease-resistant varieties in La Rioja

The European wine industry is facing multiple challenges derived from climate change and the pressure of different fungal diseases that are compromising the production of traditional varieties. A sustainable alternative maybe the adoption of resistant varieties.
In this study, we have evaluated the enological potential of 9 resistant varieties (5 white and 4 red varieties) in La Rioja. Microvinifications were carried out with three biological replications. Oenological parameters were very diverse with acid content varying from 2.6 g/L to 6.6 g/L.

Evaluation of physiological properties of grapevine clones of ‘Tempranillo’ and ‘Graciano’ in DOCa Rioja (Spain)

In order to avoid the loss of grapevine intra-varietal diversity of DOCa Rioja grape varieties, Regional Government of La Rioja established a germplasm bank with more than 1.600 accessions, whose origin lies in the prospecting and sampling of ancient vineyards located throughout the whole region. 30 clones of Tempranillo and 13 clones of Graciano were preselected and multiplied in a new vineyard for further observations. The aim of this work is to describe the first results from the physiological characterization by an optical sensor of these preselected clones, which constitute the base of a new clonal selection that aims to increase the range of available certified clones and to improve the adaptation of these varieties to future objectives and environmental conditions.