terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Assessment of plant water consumption rates under climate change conditions through an automated modular platform

Assessment of plant water consumption rates under climate change conditions through an automated modular platform

Abstract

The impact of climate change is noticeable in the present weather, making water scarcity the most immediate mediator reducing the performance and viability of crops, including grapevine (Vitis vinifera L.). The present study developed a system (hardware, firmware, and software) for the determination of plant water use through changes in weight through a period. The aim is to measure the differences in grapevine water consumption in response to climate change (+4oC and 700 ppm) under controlled conditions. The results reveal a correlation between daily plant consumption rates and reference evapotranspiration (ETo). However, plant water consumption had much strongercorrelations with leaf area and substrate available water content. Interestingly, an increase in 4oC and 700 ppm of CO2 did not result in higher water consumption rates when plants had similar leaf areas. This is supported by the lack of differences in discrete leaf transpiration (E) rates determined throughout the same period. Stomatal conductance was significantly lower in +4oC and 700 ppm plants, which agrees with the reported effect of CO2 in previous studies. Although further investigation will be carried out to determine the impact of each of the climate change factors on daily water consumption rates, photosynthetic acclimation to elevated CO2 may be a key factor for the adaptation of crops to water scarcity.

Keywords: Climate change, water stress, temperature, elevated CO2, evapotranspiration, stomatal regulation.

Acknowledgements: Thanks to A. Urdiain, M. Oyarzun & H. Santesteban for technical support. Ministerio de Ciencia e Innovación (Gobierno de España; Ref. PID2020-118337RB-IOO) and “ANDIA talento senior 2021” (Gobierno de Navarra) funded the research.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Johann Martinez-Lüscher 1*, Inmaculada Pascual, Nieves Goicoechea

1Universidad de Navarra-BIOMA, Plant Stress Physiology Group (Associated Unit to CSIC, EEAD, Zaragoza). Irunlarrea 1, 31008, Pamplona (Spain)

Contact the author*

Keywords

climate change, water stress, temperature, elevated CO2, evapotranspiration, stomatal regulation

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Limiting magnesium availability: a novel approach to managing brettanomyces spoilage in winemaking

Brettanomyces is a world-renowned yeast that negatively impacts the chemical composition of wines through the production of metabolites that negatively impact the sensory properties of the final product. Its resilience in wine conditions and ability to produce off-flavors make it a challenge for winemakers. Currently, the primary control technique involves adding sulfur dioxide (SO2); however, some Brettanomyces strains are developing resistance to this preservative agent. [1] Therefore, new management strategies are necessary to control this spoilage yeast.

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time.

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).

Effect of abiotic stress and grape variety on amino acid and polyamine composition of red grape berries

Vines are exposed to environmental conditions that cause abiotic stress on the plants (drought, nutrient and mineral deficits, salinity, etc.). Polyamines are growth regulators involved in various physiological processes, as in abiotic plant stress responses. Stressful conditions can modify grape’s composition, and in this work, we have focused on studying the effect of abiotic stress on the composition of polyamines and amino acids in grapes. In addition, the effect of grape variety on these compounds has been studied.

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).
Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8).