terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Assessment of plant water consumption rates under climate change conditions through an automated modular platform

Assessment of plant water consumption rates under climate change conditions through an automated modular platform

Abstract

The impact of climate change is noticeable in the present weather, making water scarcity the most immediate mediator reducing the performance and viability of crops, including grapevine (Vitis vinifera L.). The present study developed a system (hardware, firmware, and software) for the determination of plant water use through changes in weight through a period. The aim is to measure the differences in grapevine water consumption in response to climate change (+4oC and 700 ppm) under controlled conditions. The results reveal a correlation between daily plant consumption rates and reference evapotranspiration (ETo). However, plant water consumption had much strongercorrelations with leaf area and substrate available water content. Interestingly, an increase in 4oC and 700 ppm of CO2 did not result in higher water consumption rates when plants had similar leaf areas. This is supported by the lack of differences in discrete leaf transpiration (E) rates determined throughout the same period. Stomatal conductance was significantly lower in +4oC and 700 ppm plants, which agrees with the reported effect of CO2 in previous studies. Although further investigation will be carried out to determine the impact of each of the climate change factors on daily water consumption rates, photosynthetic acclimation to elevated CO2 may be a key factor for the adaptation of crops to water scarcity.

Keywords: Climate change, water stress, temperature, elevated CO2, evapotranspiration, stomatal regulation.

Acknowledgements: Thanks to A. Urdiain, M. Oyarzun & H. Santesteban for technical support. Ministerio de Ciencia e Innovación (Gobierno de España; Ref. PID2020-118337RB-IOO) and “ANDIA talento senior 2021” (Gobierno de Navarra) funded the research.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Johann Martinez-Lüscher 1*, Inmaculada Pascual, Nieves Goicoechea

1Universidad de Navarra-BIOMA, Plant Stress Physiology Group (Associated Unit to CSIC, EEAD, Zaragoza). Irunlarrea 1, 31008, Pamplona (Spain)

Contact the author*

Keywords

climate change, water stress, temperature, elevated CO2, evapotranspiration, stomatal regulation

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effects of heat and water stress on grapevine health: primary and secondary metabolism

Grapevine resilience to climate change has become one of the most pressing topics in the Viticulture & Enology field. Vineyard health demands understanding the mechanisms that explain the direct and indirect interactions between environmental stressors. The current climate change scenario, where drought and heat-wave are more frequent and intense, strongly demands improving our knowledge of environmental stresses. During a heatwave, the ambient temperature rises above the plant’s average tolerance threshold and, generally, above 35 oC plant’s adaptation to heat stress is activated.

Options to replace or reduce the sulphite content in Tannat red wines produced with minimal intervention

Several Uruguayan wineries have begun to produce wines with minimal intervention, to increase the sustainability of their vineyards and wines. These wines are characterized by the minimum intervention in the management of the vineyard, its harvest, vinification, conservation and aging1,2. Sulfur dioxide (SO2) is not used or is used in reduced doses, although chitosan can be substituted or supplemented1. The objective of this research is to evaluate SO2 reduction or replacement options adapted to the production of Tannat red wines with minimal intervention. Vinification of the Tannat grapes with autochthonous yeasts (LN) was carried out during the 2023 vintage.

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.

Sparkling wines and atypical aging: investigating the risk of refermentation

Sparkling wine (SW) production entails a two-steps process where grape must undergoes a primary fermentation to produce a base wine (BW) which is then refermented to become a SW. This process allows for the development of a new physicochemical profile characterized by the presence of foam and a different organoleptic profile.

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].