terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 A phylogenomic study reveals the major dissemination routes of ‘Tempranillo Tinto’ in the Iberian Peninsula

A phylogenomic study reveals the major dissemination routes of ‘Tempranillo Tinto’ in the Iberian Peninsula

Abstract

‘Tempranillo Tinto’ is a black-berried Iberian cultivar that originated from a hybridization between cvs. ‘Benedicto’ and ‘Albillo Mayor’ [1]. Today, it is the third most widely grown wine grape cultivar worldwide with more than 200,000 hectares of vineyards mostly distributed along the Iberian Peninsula, where it is also known as ‘Cencibel’, ‘Tinta de Toro’, ‘Tinta Roriz’, and ‘Aragonez’, among other synonyms. Here, we quantified the intra-varietal genomic diversity in this cultivar through the study of 35 clones or ancient vines from seven different Iberian wine-making regions. A comparative analysis after Illumina whole-genome sequencing revealed the presence of 1,120 clonal single nucleotide variants (SNVs). A phylogenetic network from shared SNVs grouped the samples according to their geographic origin. Combined with genome re-sequencing data from the two ‘Tempranillo Tinto’ parents, this network clearly points out the Ebro River Valley as the region of origin of this cultivar. It also indicates one major historical dissemination route that likely progressed westwards towards the main wine-making regions found across the Duero River Valley and to the South in Portugal. Collectively, the results obtained in this study shed light on the origin and historical dispersal of ‘Tempranillo Tinto’ in the Iberian Peninsula, and release informative SNVs for the differentiation of intra-cultivar lineages.

Acknowledgements: This work is part of the project “Diversidad genética en la vid y adaptación al cambio climático” (PID2020-120183RB-I00), funded by MCIN/AEI/10.13039/501100011033

References:

1)  Ibáñez J. et al. (2012) Genetic origin of the grapevine cultivar Tempranillo. Am. J. Enol. Vitic. 63(4): 549-553, DOI 10.5344/ajev.2012.12012

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Javier Tello1*, Pablo Carbonell-Bejerano1, Rafael Torres-Pérez2, Yolanda Ferradás1,3, Carolina Royo1, Juan Carlos Oliveros2, Javier Ibáñez1, José Miguel Martínez-Zapater1

1 Instituto de Ciencias de la Vid y del Vino, Finca La Grajera, Ctra. de Burgos Km. 6, 26007 Logroño
2 Centro Nacional de Biotecnología, C/Darwin 3, 28049 Madrid
3 Facultad de Biología, Universidad de Santiago de Compostela, 15872 Santiago de Compostela

Contact the author*

Keywords

genomic diversification, grapevine clones, Single Nucleotide Variants (SNVs), Vitis vinifera, whole genome sequencing

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The evolution of the aromatic composition of carbonic maceration wines

The vinification by Carbonic maceration (CM) involves the process whereby the whole bunches are subjected to anaerobic conditions during several days. In this anaerobic condition, the grape endogenous enzymes begin an intracellular fermentation. This situation favors that whole grapes split open and release their juice into the tank, increasing the liquid phase that is fermented by yeasts [1]. Then, two types of wines are obtained; one from the free-run liquid in the tank (FCM) and other from the liquid after pressing the whole grape bunches (PCM). PCM wines are recognized as high quality young wines because their fruity and floral aromas[2] that although they are very intense at the end of the winemaking they gradually disappear during conservation.

Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Changes in the rainfall and temperature patterns affect the increase of drought periods becoming one of the major constraints to assure agricultural and crop resilience in the Mediterranean regions. Beside the adaptation of agricultural practices, also the microbial compartment associated to plants should be considered in the crop management. It is known that the microbial community change according to several factors such as soil composition, agricultural management system, plant variety and rootstock.

Toasting and grain effect on Tempranillo red wine aged in Quercus petraea barrels

The barrel-making process is widely recognized as a crucial practice that affects the composition of barrel-aged wine. After the drying process, the staves are considered ready for barrel assembly, which includes the processes of bending and toasting the barrel structure. Toasting is considered one of the most critical stages in determining the physical and chemical composition of the staves, which can influence the chemical and sensory composition of the wine aged in barrels made from them [1].

Exploring the prevalence of esca-induced leaf symptoms in French vineyards and the role of climate: a national scale analysis

Esca, a severe trunk disease affecting vineyards, is caused by fungal pathogens that induce wood necrosis and decay, leaf symptoms, yield losses, and potentially a rapid death of the vine. The prevalence of this disease varies across years, regions, cultivars, and plot ages. Despite its significance in understanding and predicting dieback risk in different vineyards, the role of climate in trunk diseases remains a relatively unexplored research area. While some studies have demonstrated the impact of certain climatic conditions on the prevalence of the disease, they often focus on a limited number of plots and yield conflicting results.We conducted a statistical analysis, using a Bayesian approach on a national database comprising prevalence data of esca from over 500 different plots in France, spanning the years 2003 to 2022 and encompassing various cultivars.

Oenological compatibility of biocontrol yeasts applied to wine grapes 

Antagonistic yeasts applied to wine grapes must be compatible with the thereafter winemaking process, avoiding competition with the fermentative Saccharomyces cerevisiae or affecting wine flavour. Therefore, fifteen epiphytic yeasts (6 Metschnikowia sp., 6 Hanseniaspora uvarum, 3 Starmerella bacillaris) previously selected for its biocontrol ability against Alternaria on wine grapes were evaluate for possible competition with S. cerevisiae by the Niche Overlap Index (NOI) employing YNB agar media with 10 mM of 17 different carbonate sources present in wine grapes (proline, asparagine, alanine, glutamic acid, tirosine, arginine, lisine, methionine, glicine, malic acid, tartaric acid, fructose, melibiose, raffinose, rhamnose, sucrose, glucose).