terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Genetic study of wild grapevines in La Rioja region

Genetic study of wild grapevines in La Rioja region

Abstract

Since the mid-1980s, several surveys have been carried out in La Rioja to search for populations of the sylvestrisgrapevine subspecies (Vitis vinifera L. subsp. sylvestris Gmelin). The banks of the Ebro River and its tributaries (Alhama, Cidacos, Leza, Iregua, Najerilla, Oja and Tirón rivers), as well as the surrounding vegetation of their valleys have been covered. So far, all the populations found are alluvial, forming part of the riparian vegetation of the Najerilla (the first reported population in La Rioja [1]), Iregua, and the vicinity of Oja valleys. Nevertheless, doubts arose from the beginning about the ‘sylvestris purity’ of some of these wild vines. In this work, leaves and/or cuttings from 83 vines have been used for genetic analyses: 63 vines were sampled in the wild in La Rioja region (17 from Najerilla banks, 43 from Iregua banks, and 3 from Agualinos stream, tributary of the Oja river), and 20 vines were sampled in the grapevine sylvestris collection of the University of La Rioja, originally collected as wild vines from the Najerilla valley. DNAs were extracted and genotyped at 6 microsatellite and 240 SNP markers. A total of 58 different genotypes were found, 20 in the Najerilla population, 36 in the Iregua population and 2 in the Oja population. These genotypes were included in a large genetic structure analysis of more than 2.800 genotypes representing worldwide sylvestrisand sativa subspecies. More than 84% of the wild samples from La Rioja showed a high membership coefficient to the sylvestris population, supporting their sylvestris condition. A local analysis focused on genotypes of cultivated and wild vines found in La Rioja separated them into two main clusters, with a clear division between sylvestris and cultivated vines. Some wild vine genotypes were found in intermediate positions between these two groups, indicating the existence of an introgression of the sativa gene pool into the sylvestris population, constituting an additional threat to the sylvestris subspecies.

Acknowledgements: This work is part of the project “Diversidad genética en la vid y adaptación al cambio climático” (PID2020-120183RB-I00), funded by MCIN / AEI /10.13039/501100011033.

1)  De Toda F. M. and J. C. Sancha (1999) Characterization of Wild Vines in La Rioja (Spain). Am. J. Enol. Vitic. 50: 443-446, doi: 10.5344/ajev.1999.50.4.443.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Javier Ibáñez1*, Javier Tello1, Fernando Martínez de Toda1, José Manuel Valle2, Álvaro Rodríguez-Miranda2, Carlos Alvar Ocete3, José Miguel Martínez-Zapater1, Rafael Ocete3

1 Instituto de Ciencias de la Vid y del Vino (CSIC, UR, CAR). Finca La Grajera, Ctra. de Burgos Km. 6, 26007 Logroño, La Rioja. Spain
2 Built Heritage Research Group (GPAC), University of the Basque Country (UPV/EHU), Vitoria- Gasteiz. Spain
3 Freelance, Tirgo, La Rioja. Spain

Contact the author*

Keywords

introgression, genetic structure, microsatellite, SNP, sylvestris, Vitis vinifera, wild

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Identification of loci associated with specialised metabolites in Vitis vinifera

Secondary (or specialised) metabolites such as terpenes and phenolic compounds are produced by plants for various roles which include defence against pathogens and herbivores, protection against abiotic stress, and plant signalling. Additionally, these metabolites influence grapevine quality traits such as colour, aroma, taste, and nutritional value. However, the biosynthesis of these metabolites is often complex and controlled by multiple genes which in grapevine are predominantly uncharacterised.

Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

In the context of global change, the environmental conditions are expected to be more stressful for viticulture. The choice of the rootstock may play a crucial role to improve the adaptation of viticulture to new biotic and abiotic threats (Ollat et al., 2016). However, the selection of interesting traits in rootstock breeding programs is complex because of the combination of multiple targets in a same ideotype. In this sense, the integration of studies about the genetic architecture for desired biotic and abiotic response traits allow us to identify genomic regions to combine and those with interesting pleiotropic effects.

Characterization of spoilage yeasts from Malbec grapes from San Rafael wine region (Argentina)

The yeast ecosystem in grape musts is quite broad and depends on the region and the health of the grapes. Within this, there are yeasts that can generate fermentative deviations and/or cause defects in the wine. It is very important to address this issue because there are significant economic losses in the wine industry when the fermentation process and/or the organoleptic characteristics of the wine are negatively affected, even more today since climate change has a marked effect on the composition of this ecosystem. The aim of this work is to characterize the behavior regarding detrimental oenological features of potential spoilage yeasts isolated from viticultural environments.

Barrels ad-hoc: Spanish oak wood classification by NIRs 

The wooden barrel is a key factor in enology, since wine chemical composition and sensory properties changes significantly in contact with the barrel[1]. Today’s highly competitive market constantly demands new differentiated products and wineries search innovations continuously.
Wood selection is crucial: barrels stability to keep constant their contribution and the result on products, and additional and differentiated wood contributions to impact their new products. Oak wood selection has traditionally been carried out using parameters such as specie, location and grain, however, it goes one step further nowadays. Large cooperage work with non-destructive techniques that allow classifying oak wood quickly and easily according to their organoleptic contribution[2].

Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Several studies have tried to develop different methods to study the photodegradation of wine in an accelerated way, trying to elucidate the effect of light on the wine compounds[1]. In a previous study, our team developed a chamber that speeds up the photodegradation of rosé wine[2]. In the present work we have tried to establish a correlation between irradiation times in accelerated conditions and the natural exposure to the cycles of light that usually exist in markets or at home.