terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Genetic study of wild grapevines in La Rioja region

Genetic study of wild grapevines in La Rioja region

Abstract

Since the mid-1980s, several surveys have been carried out in La Rioja to search for populations of the sylvestrisgrapevine subspecies (Vitis vinifera L. subsp. sylvestris Gmelin). The banks of the Ebro River and its tributaries (Alhama, Cidacos, Leza, Iregua, Najerilla, Oja and Tirón rivers), as well as the surrounding vegetation of their valleys have been covered. So far, all the populations found are alluvial, forming part of the riparian vegetation of the Najerilla (the first reported population in La Rioja [1]), Iregua, and the vicinity of Oja valleys. Nevertheless, doubts arose from the beginning about the ‘sylvestris purity’ of some of these wild vines. In this work, leaves and/or cuttings from 83 vines have been used for genetic analyses: 63 vines were sampled in the wild in La Rioja region (17 from Najerilla banks, 43 from Iregua banks, and 3 from Agualinos stream, tributary of the Oja river), and 20 vines were sampled in the grapevine sylvestris collection of the University of La Rioja, originally collected as wild vines from the Najerilla valley. DNAs were extracted and genotyped at 6 microsatellite and 240 SNP markers. A total of 58 different genotypes were found, 20 in the Najerilla population, 36 in the Iregua population and 2 in the Oja population. These genotypes were included in a large genetic structure analysis of more than 2.800 genotypes representing worldwide sylvestrisand sativa subspecies. More than 84% of the wild samples from La Rioja showed a high membership coefficient to the sylvestris population, supporting their sylvestris condition. A local analysis focused on genotypes of cultivated and wild vines found in La Rioja separated them into two main clusters, with a clear division between sylvestris and cultivated vines. Some wild vine genotypes were found in intermediate positions between these two groups, indicating the existence of an introgression of the sativa gene pool into the sylvestris population, constituting an additional threat to the sylvestris subspecies.

Acknowledgements: This work is part of the project “Diversidad genética en la vid y adaptación al cambio climático” (PID2020-120183RB-I00), funded by MCIN / AEI /10.13039/501100011033.

1)  De Toda F. M. and J. C. Sancha (1999) Characterization of Wild Vines in La Rioja (Spain). Am. J. Enol. Vitic. 50: 443-446, doi: 10.5344/ajev.1999.50.4.443.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Javier Ibáñez1*, Javier Tello1, Fernando Martínez de Toda1, José Manuel Valle2, Álvaro Rodríguez-Miranda2, Carlos Alvar Ocete3, José Miguel Martínez-Zapater1, Rafael Ocete3

1 Instituto de Ciencias de la Vid y del Vino (CSIC, UR, CAR). Finca La Grajera, Ctra. de Burgos Km. 6, 26007 Logroño, La Rioja. Spain
2 Built Heritage Research Group (GPAC), University of the Basque Country (UPV/EHU), Vitoria- Gasteiz. Spain
3 Freelance, Tirgo, La Rioja. Spain

Contact the author*

Keywords

introgression, genetic structure, microsatellite, SNP, sylvestris, Vitis vinifera, wild

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.

Role of anthocyanins and copigmentation in flavonol solubility in red wines 

Over the last years, due to climate change, several red wines, such as the Sangiovese wines, have been often subjected to loss of clarity due to the formation of deposits of fine needle-shaped crystals. This phenomenon turned out to be due to an excess of quercetin (Q) and its glycosides (Q-Gs) in wines. These compounds are synthesized to a large extent when grapes are excessively exposed to UVB radiations in vineyards[1]. Unfortunately, it is not easy to predict the degree of Q precipitation because its solubility strongly depends on the wine and matrix composition[2].

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.

Effect of spray with autochthonous Trichoderma strains and its secondary metabolites on the quality of Tempranillo grape

Trichoderma is one of the most widely used fungal biocontrol agents on vineyards due to its multiple benefits on this crop, such as its fungicidal and growth promoting capacity. In this work, we have analyzed the effect on the concentration of nutrients in grapevine leaves and on the quality of the grape must after spraying an autochthonous strain of Trichoderma harzianum and one of the main secondary metabolites produced by this genus, 6-pentyl-α-pyrone (6PP).

Chemical profiling and sensory analysis of wines from resistant hybrid grape cultivars vs conventional wines

Recently, there has been a shift toward sustainable wine production, according to EU policy (F2F and Green Deal), to reduce pesticide usage, improve workplace health and safety, and prevent the impacts of climate change. These trends have gained the interest of consumers and winemakers. The cultivation of disease resistant hybrid grape cultivars (DRHGC), known as ‘PIWI’ grapes can help with these objectives [1]. This study aimed to profile white and red wines produced from DRHGC in South Tyrol (Italy). Wines produced from DRHGCs were compared with conventional wines produced by the same wineries. The measured parameters were residual sugars, organic acids, alcohol content, pigments and other phenolics by LC-QqQ/MS, colorimetric indexes (CIELab); and volatile profiles (HS-SPME-GCxGC-ToF/MS [2]).