terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Genetic study of wild grapevines in La Rioja region

Genetic study of wild grapevines in La Rioja region

Abstract

Since the mid-1980s, several surveys have been carried out in La Rioja to search for populations of the sylvestrisgrapevine subspecies (Vitis vinifera L. subsp. sylvestris Gmelin). The banks of the Ebro River and its tributaries (Alhama, Cidacos, Leza, Iregua, Najerilla, Oja and Tirón rivers), as well as the surrounding vegetation of their valleys have been covered. So far, all the populations found are alluvial, forming part of the riparian vegetation of the Najerilla (the first reported population in La Rioja [1]), Iregua, and the vicinity of Oja valleys. Nevertheless, doubts arose from the beginning about the ‘sylvestris purity’ of some of these wild vines. In this work, leaves and/or cuttings from 83 vines have been used for genetic analyses: 63 vines were sampled in the wild in La Rioja region (17 from Najerilla banks, 43 from Iregua banks, and 3 from Agualinos stream, tributary of the Oja river), and 20 vines were sampled in the grapevine sylvestris collection of the University of La Rioja, originally collected as wild vines from the Najerilla valley. DNAs were extracted and genotyped at 6 microsatellite and 240 SNP markers. A total of 58 different genotypes were found, 20 in the Najerilla population, 36 in the Iregua population and 2 in the Oja population. These genotypes were included in a large genetic structure analysis of more than 2.800 genotypes representing worldwide sylvestrisand sativa subspecies. More than 84% of the wild samples from La Rioja showed a high membership coefficient to the sylvestris population, supporting their sylvestris condition. A local analysis focused on genotypes of cultivated and wild vines found in La Rioja separated them into two main clusters, with a clear division between sylvestris and cultivated vines. Some wild vine genotypes were found in intermediate positions between these two groups, indicating the existence of an introgression of the sativa gene pool into the sylvestris population, constituting an additional threat to the sylvestris subspecies.

Acknowledgements: This work is part of the project “Diversidad genética en la vid y adaptación al cambio climático” (PID2020-120183RB-I00), funded by MCIN / AEI /10.13039/501100011033.

1)  De Toda F. M. and J. C. Sancha (1999) Characterization of Wild Vines in La Rioja (Spain). Am. J. Enol. Vitic. 50: 443-446, doi: 10.5344/ajev.1999.50.4.443.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Javier Ibáñez1*, Javier Tello1, Fernando Martínez de Toda1, José Manuel Valle2, Álvaro Rodríguez-Miranda2, Carlos Alvar Ocete3, José Miguel Martínez-Zapater1, Rafael Ocete3

1 Instituto de Ciencias de la Vid y del Vino (CSIC, UR, CAR). Finca La Grajera, Ctra. de Burgos Km. 6, 26007 Logroño, La Rioja. Spain
2 Built Heritage Research Group (GPAC), University of the Basque Country (UPV/EHU), Vitoria- Gasteiz. Spain
3 Freelance, Tirgo, La Rioja. Spain

Contact the author*

Keywords

introgression, genetic structure, microsatellite, SNP, sylvestris, Vitis vinifera, wild

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

New crossbreed winegrape genotypes cultivated under rainfed conditions in a semi-arid Mediterranean region

Traditional drought tolerant varieties such as Cabernet Sauvignon, Monastrell, and Syrah [1], have been used as parents in the grapevine breeding program initiated by the Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA) in 1997 [2]. This work presents the results of evaluating three new genotypes obtained from crosses between ‘Monastrell’ and ‘Cabernet Sauvignon’ (MC16 and MC80) and between ‘Monastrell’ and ‘Syrah’ (MS104), comparing their performance under conditions of water scarcity and high temperatures with that of their respective parental varieties. For this purpose, the six genotypes were cultivated under controlled irrigation conditions (60% ETc) and rainfed conditions.

The exploitation of Croatian grapevine genetic resources for the breeding of new resistant cultivars 

Croatian viticulture is mainly based on native grapevine varieties susceptible to various diseases and pests, which leads to unsustainable use of large amounts of pesticides. The sustainable development of viticulture in the future will only be possible by increasing the resistance of the grapevine through the development of new resistant varieties. Breeding programs have been launched in the leading wine-growing countries to develop resistant varieties possessing high-quality levels. Native cultivars from Croatia are not included in the breeding programs of other countries.

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.

Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Wine contains secondary metabolites derived from aromatic amino acids (AADC), which can determine quality, stability and bioactivity. Several yeast species, as well as some lactic acid bacteria (LAB), can contribute in the production of these aromatic compounds. Winemaking should be studied as a series of microbial interactions, that work as an interconnected network, and can determine the metabolic and analytical profiles of wine. The aim of this work was to select microorganisms (yeast and LAB) based on their potential to produce AADC compounds, such as tyrosol and hydroxytyrosol, and design a microbial consortium that could increase the production of these AADC compounds in wines.

Influence of different Lachancea thermotolerans strains in wine acidity

Wine acidity is a parameter of great importance that influences different quality factors of the product such as biological stability or organoleptic characteristics. In the current context of climate change, which gives rise to wines with higher levels of ethanol and lower acidity, the biological acidification with yeast species such as Lachancea thermotolerans could be a solution.
In this work, the effect of the inoculation of different L. thermotolerans on the acidity of wine was studied.