terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Genetic study of wild grapevines in La Rioja region

Genetic study of wild grapevines in La Rioja region

Abstract

Since the mid-1980s, several surveys have been carried out in La Rioja to search for populations of the sylvestrisgrapevine subspecies (Vitis vinifera L. subsp. sylvestris Gmelin). The banks of the Ebro River and its tributaries (Alhama, Cidacos, Leza, Iregua, Najerilla, Oja and Tirón rivers), as well as the surrounding vegetation of their valleys have been covered. So far, all the populations found are alluvial, forming part of the riparian vegetation of the Najerilla (the first reported population in La Rioja [1]), Iregua, and the vicinity of Oja valleys. Nevertheless, doubts arose from the beginning about the ‘sylvestris purity’ of some of these wild vines. In this work, leaves and/or cuttings from 83 vines have been used for genetic analyses: 63 vines were sampled in the wild in La Rioja region (17 from Najerilla banks, 43 from Iregua banks, and 3 from Agualinos stream, tributary of the Oja river), and 20 vines were sampled in the grapevine sylvestris collection of the University of La Rioja, originally collected as wild vines from the Najerilla valley. DNAs were extracted and genotyped at 6 microsatellite and 240 SNP markers. A total of 58 different genotypes were found, 20 in the Najerilla population, 36 in the Iregua population and 2 in the Oja population. These genotypes were included in a large genetic structure analysis of more than 2.800 genotypes representing worldwide sylvestrisand sativa subspecies. More than 84% of the wild samples from La Rioja showed a high membership coefficient to the sylvestris population, supporting their sylvestris condition. A local analysis focused on genotypes of cultivated and wild vines found in La Rioja separated them into two main clusters, with a clear division between sylvestris and cultivated vines. Some wild vine genotypes were found in intermediate positions between these two groups, indicating the existence of an introgression of the sativa gene pool into the sylvestris population, constituting an additional threat to the sylvestris subspecies.

Acknowledgements: This work is part of the project “Diversidad genética en la vid y adaptación al cambio climático” (PID2020-120183RB-I00), funded by MCIN / AEI /10.13039/501100011033.

1)  De Toda F. M. and J. C. Sancha (1999) Characterization of Wild Vines in La Rioja (Spain). Am. J. Enol. Vitic. 50: 443-446, doi: 10.5344/ajev.1999.50.4.443.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Javier Ibáñez1*, Javier Tello1, Fernando Martínez de Toda1, José Manuel Valle2, Álvaro Rodríguez-Miranda2, Carlos Alvar Ocete3, José Miguel Martínez-Zapater1, Rafael Ocete3

1 Instituto de Ciencias de la Vid y del Vino (CSIC, UR, CAR). Finca La Grajera, Ctra. de Burgos Km. 6, 26007 Logroño, La Rioja. Spain
2 Built Heritage Research Group (GPAC), University of the Basque Country (UPV/EHU), Vitoria- Gasteiz. Spain
3 Freelance, Tirgo, La Rioja. Spain

Contact the author*

Keywords

introgression, genetic structure, microsatellite, SNP, sylvestris, Vitis vinifera, wild

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the whole plant. Rootstocks are an important way of adapting to environmental conditions while conserving the typical features of scion varieties. We can exploit the large diversity of rootstocks used worldwide to aid this adaptation. The aim of this study was to characterise rootstock regulation of scion mineral status and its relation with scion development.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison.

Organic mulches slightly influence wine phenolic composition and sensorial properties

Grapevines have traditionally been grown in semi-arid areas, but viticulture is now compromised by climate change. Therefore, it is necessary to implement environmentally friendly viticulture practices to adapt grapevines to current climatic conditions. In this context, organic mulches offer many benefits, such as reduced soil erosion and increased organic matter, soil water content and crop productivity. However, these practices must not compromise grape and wine quality. Therefore, the objective of this study was to evaluate the effect on wine physicochemical and phenolic composition and sensorial properties of different soil management practices on the vine row. Over four years, five soil treatments were examined in two different vineyards.

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).

Evaluation of the effects of pruning methodology on the development of young vines 

Grapevine pruning is one of the most important practices in the vineyards. Winegrowers use it to provide the vines the shape needed, or to maintain it once achieved, and also to balance vegetative growth and fruit production. In the last decades, careless pruning has been blamed, among other factors, as responsible of the vineyard decay that is been observed even in young vines. However, to our knowledge, there is a lack of systematic research trying to elucidate to which extent the pruning method used affects plant development or its susceptibility to grapevine trunk diseases (GTD). Within this context, the aim of this work is to study the influence of different pruning method strategies on the development of field-planted young vines.