terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect on the grape and wine characteristics of cv. Tempranillo at 3 production levels

Effect on the grape and wine characteristics of cv. Tempranillo at 3 production levels

Abstract

The vineyard has experienced a general increase in yields mainly due to the elevated use of technology which caused a quality loss of grapes in more than one case. A large percentage of the Spanish vineyard is covered by a Denomination of Origin which limits the productive level of the vineyards as one of its regulations. The maximum production limit is a variable characteristic of each vineyard and is not usually regulated by agronomic criteria, and this explains the fact that each vineyard can reach high quality with a totally different yield from that set by the Denomination of Origin.

This study aims to evaluate the effect of three different and theoretical production levels on the grape and wine quality during the years 2020, 2021 and 2022.  For this, an early yield estimation method (in fruit set) has been used, and subsequent productive adjustment at the beginning of veraison to 5000 Kg. ha-1, 7000 Kg. ha-1 and 9000 Kg. ha-1 in a Tempranillo variety’s vineyard under the Denomination of Origin Ribera del Duero.

The results show that the production level adjustment methodology is quite accurate, with few differences noticed between the theoretical estimated yield and the actually obtained. On one hand, the parameters that define the grape’s composition are very similar among the three productive levels studied. However, the wine quality witness some statistically significant differences in the phenolic composition and colour. In the same way, the organoleptic analysis has shown different wine profiles during the years of study. The wines from the different yields have not been valued by the consumer tasting panel in a linear way according to the crop load.

Acknowledgements: Thanks to the financial support of the Junta de Castilla y León (Spain), ITACyL, and the VISOSTEC project (FEADER funds). The authors thank the Solterra Wine Company for its contribution by their helpful in the vineyard operations and the grapes.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Barajas1, S. Vélez2, M. Bueno1, A. Martín1, J.A. Rubio1, D. Ruano-Rosa3 and S. Pérez-Magariño1

1 Instituto Tecnológico Agrario de Castilla y León (ITACyL). Valladolid, España.
2 Information Technology Group. Wageningen University & Research (WUR). Wageningen. Gelderland. Netherlands.
3 Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA-Las Torres). Sevilla. España.

Contact the author*

Keywords

cluster thinning, crop load, consumer tasting panel, organoleptic tasting

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Bacterial antibiotic resistance is a major current health problem. Polyphenols have demonstrated antibacterial activity, and in this work we studied the effect of oenological polyphenols on the growth of intestinal multidrug-resistant strains of human and animal origin. Two Enterococcus faecium strains, resistant to vancomycin and other antibiotics, and four Escherichia coli strains, resistant to ampicillin and other antibiotics, were included in this study. All strains showed multidrug resistant phenotypes and genotypes to at least two antibiotic families.

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.

Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties

Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon.

Toasting and grain effect on Tempranillo red wine aged in Quercus petraea barrels

The barrel-making process is widely recognized as a crucial practice that affects the composition of barrel-aged wine. After the drying process, the staves are considered ready for barrel assembly, which includes the processes of bending and toasting the barrel structure. Toasting is considered one of the most critical stages in determining the physical and chemical composition of the staves, which can influence the chemical and sensory composition of the wine aged in barrels made from them [1].

Application of an in vitro digestion model to study the bioaccessibility and the effect of the intestinal microbiota on the red wine proanthocyanidins 

Proanthocyanidins are important phenolic fraction for wine quality, contributing to astringency, bitterness and color. Their metabolism begins in the mouth and continues throughout the gastrointestinal tract; however, most of them are accumulated in the colon where are metabolized by the intestinal microbiota, giving rise to a whole series of phenolic acids that may have greater activity at physiological level than the precursors[1]. This study aimed to evaluate in vitro the bioaccessibility of proanthocyanidins in a red wine developed by Bodegas Pradorey, as well as to evaluate the potential effect of intestinal microbiota on polyphenols metabolism identifying and quantifying secondary metabolites.