terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect on the grape and wine characteristics of cv. Tempranillo at 3 production levels

Effect on the grape and wine characteristics of cv. Tempranillo at 3 production levels

Abstract

The vineyard has experienced a general increase in yields mainly due to the elevated use of technology which caused a quality loss of grapes in more than one case. A large percentage of the Spanish vineyard is covered by a Denomination of Origin which limits the productive level of the vineyards as one of its regulations. The maximum production limit is a variable characteristic of each vineyard and is not usually regulated by agronomic criteria, and this explains the fact that each vineyard can reach high quality with a totally different yield from that set by the Denomination of Origin.

This study aims to evaluate the effect of three different and theoretical production levels on the grape and wine quality during the years 2020, 2021 and 2022.  For this, an early yield estimation method (in fruit set) has been used, and subsequent productive adjustment at the beginning of veraison to 5000 Kg. ha-1, 7000 Kg. ha-1 and 9000 Kg. ha-1 in a Tempranillo variety’s vineyard under the Denomination of Origin Ribera del Duero.

The results show that the production level adjustment methodology is quite accurate, with few differences noticed between the theoretical estimated yield and the actually obtained. On one hand, the parameters that define the grape’s composition are very similar among the three productive levels studied. However, the wine quality witness some statistically significant differences in the phenolic composition and colour. In the same way, the organoleptic analysis has shown different wine profiles during the years of study. The wines from the different yields have not been valued by the consumer tasting panel in a linear way according to the crop load.

Acknowledgements: Thanks to the financial support of the Junta de Castilla y León (Spain), ITACyL, and the VISOSTEC project (FEADER funds). The authors thank the Solterra Wine Company for its contribution by their helpful in the vineyard operations and the grapes.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Barajas1, S. Vélez2, M. Bueno1, A. Martín1, J.A. Rubio1, D. Ruano-Rosa3 and S. Pérez-Magariño1

1 Instituto Tecnológico Agrario de Castilla y León (ITACyL). Valladolid, España.
2 Information Technology Group. Wageningen University & Research (WUR). Wageningen. Gelderland. Netherlands.
3 Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA-Las Torres). Sevilla. España.

Contact the author*

Keywords

cluster thinning, crop load, consumer tasting panel, organoleptic tasting

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Green pruning of shoots to force new sprouting of buds, in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

The context of climate crisis leads to the acceleration of technological ripening of grapes, with unsuitable loss of acidity, so various vineyard management alternatives are being considered to delay the grape ripening. The delay of the vegetative cycle towards a period of milder temperatures affects ripening, but vine behavior can vary according to the area, conduction, watering, variety, etc. A work is proposed to know the response to the green pruning of shoots, executed in fruit set and in pea size, in cv. Verdejo.

Agronomic and oenological behavior of the minority Mandón variety on two rootstocks in the D.O. Arribes

A large population of vines of the Mandón minority red variety (synonymous with Garró) has been located in old vineyards of the D.O. Arribes (Zamora and Salamanca) to conserve and recover this minority variety. The wines made with this variety are characterized by their good structure and color, interesting harmony, an excellently low pH, with high acidity, as well as complex aromas of blue fruits and a marked and expressive minerality.

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Cumulative effect of deficit irrigation and salinity on vine responses

Climate change is increasing water needs in most of the wine growing regions while reducing the availability and quality of water resources for irrigation. In this context, the sustainability of Mediterranean viticulture depends on grapevine responses to the combinations of water and salt stress. With this aim, this work studies the effects of deficit irrigation and salinity on the physiology of the Tempranillo cultivar (Vitis vinifera L.) grafted onto a drought and salinity tolerant rootstock (1103 Paulsen).

Assessing the Effectiveness of Electrodialysis in Controlling Brettanomyces Growth in Wine

Brettanomyces yeast can negatively impact the quality and stability of wines, posing a significant challenge to winemakers. [1] This study aims to develop novel management practices to limit Brettanomyces impact on wines by evaluating the effectiveness of electrodialysis (ED) technology in removing magnesium (Mg2+) from wine to prevent the development of Brettanomyces yeast. The ED technique utilizes charged membranes to extract ions from the wine, and it is considered an alternative to cold stabilization that requires less energy. [2]