terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect on the grape and wine characteristics of cv. Tempranillo at 3 production levels

Effect on the grape and wine characteristics of cv. Tempranillo at 3 production levels

Abstract

The vineyard has experienced a general increase in yields mainly due to the elevated use of technology which caused a quality loss of grapes in more than one case. A large percentage of the Spanish vineyard is covered by a Denomination of Origin which limits the productive level of the vineyards as one of its regulations. The maximum production limit is a variable characteristic of each vineyard and is not usually regulated by agronomic criteria, and this explains the fact that each vineyard can reach high quality with a totally different yield from that set by the Denomination of Origin.

This study aims to evaluate the effect of three different and theoretical production levels on the grape and wine quality during the years 2020, 2021 and 2022.  For this, an early yield estimation method (in fruit set) has been used, and subsequent productive adjustment at the beginning of veraison to 5000 Kg. ha-1, 7000 Kg. ha-1 and 9000 Kg. ha-1 in a Tempranillo variety’s vineyard under the Denomination of Origin Ribera del Duero.

The results show that the production level adjustment methodology is quite accurate, with few differences noticed between the theoretical estimated yield and the actually obtained. On one hand, the parameters that define the grape’s composition are very similar among the three productive levels studied. However, the wine quality witness some statistically significant differences in the phenolic composition and colour. In the same way, the organoleptic analysis has shown different wine profiles during the years of study. The wines from the different yields have not been valued by the consumer tasting panel in a linear way according to the crop load.

Acknowledgements: Thanks to the financial support of the Junta de Castilla y León (Spain), ITACyL, and the VISOSTEC project (FEADER funds). The authors thank the Solterra Wine Company for its contribution by their helpful in the vineyard operations and the grapes.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Barajas1, S. Vélez2, M. Bueno1, A. Martín1, J.A. Rubio1, D. Ruano-Rosa3 and S. Pérez-Magariño1

1 Instituto Tecnológico Agrario de Castilla y León (ITACyL). Valladolid, España.
2 Information Technology Group. Wageningen University & Research (WUR). Wageningen. Gelderland. Netherlands.
3 Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA-Las Torres). Sevilla. España.

Contact the author*

Keywords

cluster thinning, crop load, consumer tasting panel, organoleptic tasting

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Biodiversity and biocontrol ability of Trichoderma natural populations in soil vineyards from Castilla y León region (Spain)

Trichoderma is a microorganism present in many agricultural soils and some of its species could be used as natural biological control agents. In this work, the presence of natural populations of Trichoderma was estimated in soil vineyard and its biocontrol capacity against Phaeoacremonium minimum, one of the main agent causals of grapevine trunk diseases instead of using pesticides. Moreover, physicochemical variables in soil such as pH, organic matter and nutrients were evaluated to determine a possible correlation to natural populations of Trichoderma.

Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Wine contains secondary metabolites derived from aromatic amino acids (AADC), which can determine quality, stability and bioactivity. Several yeast species, as well as some lactic acid bacteria (LAB), can contribute in the production of these aromatic compounds. Winemaking should be studied as a series of microbial interactions, that work as an interconnected network, and can determine the metabolic and analytical profiles of wine. The aim of this work was to select microorganisms (yeast and LAB) based on their potential to produce AADC compounds, such as tyrosol and hydroxytyrosol, and design a microbial consortium that could increase the production of these AADC compounds in wines.

Assessing the Effectiveness of Electrodialysis in Controlling Brettanomyces Growth in Wine

Brettanomyces yeast can negatively impact the quality and stability of wines, posing a significant challenge to winemakers. [1] This study aims to develop novel management practices to limit Brettanomyces impact on wines by evaluating the effectiveness of electrodialysis (ED) technology in removing magnesium (Mg2+) from wine to prevent the development of Brettanomyces yeast. The ED technique utilizes charged membranes to extract ions from the wine, and it is considered an alternative to cold stabilization that requires less energy. [2]

Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Drought is one of the main challenges for viticulture in the context of global change. The choice of rootstock could be leveraged for vineyard adaptation to drought as we can improve plant performance without modifying the scion variety. However, most of the existing rootstocks, selected over a century ago, have a narrow genetic background which could compromise their adaptive potential.

Discovering the process of noble rot: fungal ecology of grape berries during the noble rot transformation in different vineyards of the Tokaj wine region

Botrytis cinerea, a well-known grapevine pathogen, has more than 1200 host plants causing grey rot in grapevine berries. However, it can also result in a desirable phenomenon called noble rot under specific microclimate conditions. An extraordinary demonstration of this natural process can be observed in the creation of aszú wines within Hungary’s Tokaj wine region. Beside B. cinerea other fungi and yeasts are involved in the secondary metabolic development of the grape berry which contributes to the sensory and analytical characterization of noble rot wines.