terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Abstract

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique. Two vineyard soils from La Rioja were selected (S1-sandy loam, 0.26% OC; and S2-clay loam, 0.69% OC). Freundlich Kf adsorption constants of tetraconazole (3.6-19.2) by unamended and amended soils increased in the order: S1 < S2 < S2+GC < S2+VP < S1+VP ≈ S1+GC < S2+SMS < S1+SMS; and for the residues in the order: GC < VP < SMS. The Kf values of amended soils, especially for SMS-amended soils, were higher than those of unamended soils, due to their higher OC content. The application of organic residues to S1 soil increased its Kf value between 3.7-5.4 times, and that of S2 soil up to 2.7 times. However, the Kf values of S1 soil amended with the different organic residues were higher than those of amended S2 soils, despite their lower OC content. Therefore, physicochemical characteristics of soils different from OC (pH, carbonates, clay content, etc.) may also play an important role on the adsorption of tetraconazole by amended soils as observed for other fungicides.

Acknowledgements: We give thanks to Project TED2021-129962B-C41, funded by MCIN/AEI/10.13039/501100011033/ and the European Union (NextGenerationEU/PRTR).

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Asier Barrio1, M. Soledad Andrades2, M. Sonia Rodríguez-Cruz1, Jesús M. Marín-Benito1*

Institute of Natural Resources and Agrobiology of Salamanca (IRNASA, CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain.
2 Agriculture and Food Department, University of La Rioja, Madre de Dios 51, 26006 Logroño, Spain.

Contact the author*

Keywords

adsorption, fungicide, vineyard soil, conservation, organic amendment

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Assessing the Effectiveness of Electrodialysis in Controlling Brettanomyces Growth in Wine

Brettanomyces yeast can negatively impact the quality and stability of wines, posing a significant challenge to winemakers. [1] This study aims to develop novel management practices to limit Brettanomyces impact on wines by evaluating the effectiveness of electrodialysis (ED) technology in removing magnesium (Mg2+) from wine to prevent the development of Brettanomyces yeast. The ED technique utilizes charged membranes to extract ions from the wine, and it is considered an alternative to cold stabilization that requires less energy. [2]

Green pruning of shoots to force new sprouting of buds, in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

The context of climate crisis leads to the acceleration of technological ripening of grapes, with unsuitable loss of acidity, so various vineyard management alternatives are being considered to delay the grape ripening. The delay of the vegetative cycle towards a period of milder temperatures affects ripening, but vine behavior can vary according to the area, conduction, watering, variety, etc. A work is proposed to know the response to the green pruning of shoots, executed in fruit set and in pea size, in cv. Verdejo.

Quantifying water use diversity across grapevine rootstock-scion combinations

Vines require proper light levels, temperature, and water availability, and climate change is modifying these factors, hampering yield and quality. Despite the large diversity of rootstocks, varieties, and clones, we still lack knowledge of their combined effects and potential role in a warmer and dryer future. Therefore, we aim to characterize some of the existing diversity of rootstocks and genotypes and their interaction at the eco-physiological level, combining stomatal conductance (gs) and chlorophyll a fluorescence analysis.

Water and nutritional savings shape non-structural carbohydrates in grapevine (Vitis vinifera L.) cuttings

Global changes and sustainability challenge researchers in saving water and nutrients. The response of woody crops, which can be forced at facing more drought events during their life, is particularly important. Vitis vinifera can be an important model for its relevance in countries subjected to climate changes and its breeding, requiring cuttings plantation and strong pruning.

New oenological criteria for selecting strains of Lachancea thermotolerans for wine technology

The study conducted various fermentations of different grape juices using various strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Because of the new conditions caused by climate change, wine acidity must be influenced as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real options to mitigate the impact of climate change in wine production.