terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Abstract

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique. Two vineyard soils from La Rioja were selected (S1-sandy loam, 0.26% OC; and S2-clay loam, 0.69% OC). Freundlich Kf adsorption constants of tetraconazole (3.6-19.2) by unamended and amended soils increased in the order: S1 < S2 < S2+GC < S2+VP < S1+VP ≈ S1+GC < S2+SMS < S1+SMS; and for the residues in the order: GC < VP < SMS. The Kf values of amended soils, especially for SMS-amended soils, were higher than those of unamended soils, due to their higher OC content. The application of organic residues to S1 soil increased its Kf value between 3.7-5.4 times, and that of S2 soil up to 2.7 times. However, the Kf values of S1 soil amended with the different organic residues were higher than those of amended S2 soils, despite their lower OC content. Therefore, physicochemical characteristics of soils different from OC (pH, carbonates, clay content, etc.) may also play an important role on the adsorption of tetraconazole by amended soils as observed for other fungicides.

Acknowledgements: We give thanks to Project TED2021-129962B-C41, funded by MCIN/AEI/10.13039/501100011033/ and the European Union (NextGenerationEU/PRTR).

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Asier Barrio1, M. Soledad Andrades2, M. Sonia Rodríguez-Cruz1, Jesús M. Marín-Benito1*

Institute of Natural Resources and Agrobiology of Salamanca (IRNASA, CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain.
2 Agriculture and Food Department, University of La Rioja, Madre de Dios 51, 26006 Logroño, Spain.

Contact the author*

Keywords

adsorption, fungicide, vineyard soil, conservation, organic amendment

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Plastic debris at vines: carriers of pollutants in the environment?

Modern agriculture employs large amounts of plastics, such as mulching and greenhouse films, thermal covers, plant protection tubes and tying tape. The latter two types are very common in viticulture. Guard tubes are employed to protect young vines from mechanic and atmospheric damage, whilst polymeric tying tape has replaced natural-origin materials to hold the canopy of vines. Both materials are made on synthetic polymers, which include a range of additives to improve their environmental stability remaining in the environment of vineyards for years. During this time, they are exposed to the range of pesticides (fungicides, insecticides and in a lesser extend herbicides) applied to vines.

New oenological criteria for selecting strains of Lachancea thermotolerans for wine technology

The study conducted various fermentations of different grape juices using various strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Because of the new conditions caused by climate change, wine acidity must be influenced as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real options to mitigate the impact of climate change in wine production.

Impact of climate on berry weight dynamics of a wide range of Vitis vinifera cultivars 

In order to study the impact of climate change on Bordeaux grape varieties and to assess the behavior of candidate grape varieties potentially better adapted to the new climatic conditions, an experimental vineyard composed of 52 grape varieties was planted in 2009 at the INRAE Bordeaux Aquitaine center[1]. Among the many parameters studied since 2012, berry weight for each variety was measured weekly from mid-veraison to maturity, with four independent replicates. The kinetics obtained allowed to study berry growth, a key parameter in grape composition and yield.

Oenological compatibility of biocontrol yeasts applied to wine grapes 

Antagonistic yeasts applied to wine grapes must be compatible with the thereafter winemaking process, avoiding competition with the fermentative Saccharomyces cerevisiae or affecting wine flavour. Therefore, fifteen epiphytic yeasts (6 Metschnikowia sp., 6 Hanseniaspora uvarum, 3 Starmerella bacillaris) previously selected for its biocontrol ability against Alternaria on wine grapes were evaluate for possible competition with S. cerevisiae by the Niche Overlap Index (NOI) employing YNB agar media with 10 mM of 17 different carbonate sources present in wine grapes (proline, asparagine, alanine, glutamic acid, tirosine, arginine, lisine, methionine, glicine, malic acid, tartaric acid, fructose, melibiose, raffinose, rhamnose, sucrose, glucose).

Phenolic composition and chromatic characteristics of blends of cv. Tempranillo wines from vines grown with different viticultural techniques in a semi-arid area

The quality and color stability of red wines are directly related to content and distribution of phenolic compounds. However, the climate change produces the asynchrony between the dates of technological and maturity of grapes. The crop-forcing technique (CF) restores the coupling between phenolic and technological ripeness while limits vineyard yields. Blending of wines is frequently used to equilibriate composition of wines and to increase their stability, color and quality. The aim of the present work is to study the phenolic composition and color of wine blends made with FW (wines from vines subjected to CF) and CW (wines for vines under the usual cultivation practices).