terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effects of different soil types and soil management on greenhouse gas emissions 

Effects of different soil types and soil management on greenhouse gas emissions 

Abstract

Soil is important in the carbon cycle and the dynamics of greenhouse gases (CO2, CH4 and N2O). Key soil characteristics, such as organic matter content, texture, structure, pH and microbial activity, play a determining role in GHG emissions[1]. The objective of the study is to delimit different types of soil, with different soil management and to be able to verify the differences in CO2, CH4 and N2O emissions. The study was carried out in a vineyard of Bodegas Campo Viejo in Logroño (La Rioja), whose plant material is Vitis vinifera L. cv. Tempranillo. The methodology used was based on the zoning of a 40 ha plot using the Arcgis software, through which 3 different soil types were differentiated thanks to the multispectral information previously obtained from drone flights over the plot. The soil management of the study area is characterized by alternating vegetation cover and tillage, so for each soil type (3) and for each soil management method (2), 3 replicates have been established, making a total of 18 points where the different gases are analyzed. These emissions are measured by a portable gas analyzer using infrared spectroscopy technology (FTIR) that allows measuring the concentration of gases in the field in real time.

The results corroborated that the emissions of the different gases behave differently in each of the soil types, with differences of up to 10 g m-2day-1 of CO2 between them. If we analyse the differences by soil management type, it is worth noting that areas with vegetation cover emit on average 13.9 g m-2 day-1 of CO2, while ploughed areas have average CO2 fluxes of 4.8 g m-2day-1 of CO2.

Acknowledgements: The author would like to thank Bodegas Campo Viejo for making it possible for us to carry out the experiments in their vineyards. We would also like to thank the government of La Rioja for the industrial doctorate contract.

1)  O. T. Yu, R. F. Greenhut, A. T. O’Geen, B. Mackey, W. R. Horwath, and K. L. Steenwerth, “Precipitation Events, Soil Type, and Vineyard Management Practices Influence Soil Carbon Dynamics in a Mediterranean Climate (Lodi, California),” Soil Sci. Soc. Am. J., vol. 83, no. 3, pp. 772–779, 2019.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Estíbaliz Rodrigo García3*, José María Martínez-Vidaurre1, Fernando Martínez de Toda2, Carlos Tarragona Pérez3 Alicia Pou Mir1

1 Instituto de Ciencias de la Vid y del Vino – ICVV (Gobierno de La Rioja, Universidad de La Rioja, CSIC). Ctra. de Burgos, Km. 6. 26007 Logroño (La Rioja)
Univerisidad de La Rioja, Av. Madre de Dios 53, 26006 Logroño (Spain)
Spectralgeo, Parque de los Lirios, 8, 26006 Logroño, La Rioja

Contact the author*

Keywords

soil type, tillage, vegetation cover, greenhouse gases, CO2

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.

Entomopathogenic nematodes application for controlling Lobesia botrana in grapevine and their impact on grapevine quality 

Entomopathogenic nematodes (EPN) are well-known biological control agents combined with specific adjuvants that now allow their use against aerial pests. Lobesia botrana (Lepidoptera: Tortricidae) is one of the major harmful pests detected in worldwide vineyards. Previous studies demonstrated that the EPNs Steinernema feltiae and S. carpocapsae could control L. botrana. The hypothesis was that the best combination of EPN-adjuvant/timing (season/temperatures) will support the use of EPN in the vineyard against L. botrana with no impact on the grape performance.

White grape must processed by UHPH as an alternative to SO2 addition: Effect on the phenolic composition in three varieties

The quantity and distribution of polyphenols in musts play a fundamental role in the white winemaking. This is because these substances are exposed to oxidation reactions, which are catalysed by the polyphenol oxidase (PPO), leading to a decrease in the quality of the wines produced. PPO is inactivated by SO2, but currently, due to the restrictions of the legislation, other methodologies are being investigated. Ultra-High Pressure Homogenization (UHPH) is a non-thermal physic technology that exerts an ultrahigh pressure pumping (>200 MPa) of a fluid through a valve in a continuous system.

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.

The combined use of Lachancea thermotolerans and lactic bacteria in wine technology

The production of most red wines that are sold involves an alcoholic fermentation carried out by yeasts of the Saccharomyces genus, and a subsequent fermentation carried out by lactic bacteria of the Oenococus oeni species after the first one is fully completed. However, the traditional process can face complications, which can be more likely in grape juices with high levels of sugar and pH. Because of climate change, these situations are more frequent in the wine industry. The main hazards in those scenarios are halts or delays in the alcoholic fermentation or the growth of unwanted bacteria while the alcoholic fermentation is not done yet and the wine still has residual sugars.