terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effects of different soil types and soil management on greenhouse gas emissions 

Effects of different soil types and soil management on greenhouse gas emissions 

Abstract

Soil is important in the carbon cycle and the dynamics of greenhouse gases (CO2, CH4 and N2O). Key soil characteristics, such as organic matter content, texture, structure, pH and microbial activity, play a determining role in GHG emissions[1]. The objective of the study is to delimit different types of soil, with different soil management and to be able to verify the differences in CO2, CH4 and N2O emissions. The study was carried out in a vineyard of Bodegas Campo Viejo in Logroño (La Rioja), whose plant material is Vitis vinifera L. cv. Tempranillo. The methodology used was based on the zoning of a 40 ha plot using the Arcgis software, through which 3 different soil types were differentiated thanks to the multispectral information previously obtained from drone flights over the plot. The soil management of the study area is characterized by alternating vegetation cover and tillage, so for each soil type (3) and for each soil management method (2), 3 replicates have been established, making a total of 18 points where the different gases are analyzed. These emissions are measured by a portable gas analyzer using infrared spectroscopy technology (FTIR) that allows measuring the concentration of gases in the field in real time.

The results corroborated that the emissions of the different gases behave differently in each of the soil types, with differences of up to 10 g m-2day-1 of CO2 between them. If we analyse the differences by soil management type, it is worth noting that areas with vegetation cover emit on average 13.9 g m-2 day-1 of CO2, while ploughed areas have average CO2 fluxes of 4.8 g m-2day-1 of CO2.

Acknowledgements: The author would like to thank Bodegas Campo Viejo for making it possible for us to carry out the experiments in their vineyards. We would also like to thank the government of La Rioja for the industrial doctorate contract.

1)  O. T. Yu, R. F. Greenhut, A. T. O’Geen, B. Mackey, W. R. Horwath, and K. L. Steenwerth, “Precipitation Events, Soil Type, and Vineyard Management Practices Influence Soil Carbon Dynamics in a Mediterranean Climate (Lodi, California),” Soil Sci. Soc. Am. J., vol. 83, no. 3, pp. 772–779, 2019.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Estíbaliz Rodrigo García3*, José María Martínez-Vidaurre1, Fernando Martínez de Toda2, Carlos Tarragona Pérez3 Alicia Pou Mir1

1 Instituto de Ciencias de la Vid y del Vino – ICVV (Gobierno de La Rioja, Universidad de La Rioja, CSIC). Ctra. de Burgos, Km. 6. 26007 Logroño (La Rioja)
Univerisidad de La Rioja, Av. Madre de Dios 53, 26006 Logroño (Spain)
Spectralgeo, Parque de los Lirios, 8, 26006 Logroño, La Rioja

Contact the author*

Keywords

soil type, tillage, vegetation cover, greenhouse gases, CO2

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Irrigation frequency in four grapevine red varieties in Spain. Effect on must volatile composition

The irrigation water management in the vineyard is a crucial aspect to obtain sustainable quality production over time. Previous studies have set the water requirements to be applied in the vineyard at 30 % of the reference evapotranspiration (ET0), although there are no studies that settle the effects of the frequency of irrigation application on red varieties in Spain. The present study contemplates the application of deficit irrigation (30 % ET0) applying a weekly dose in a single irrigation (T07) or in two irrigation events (T03) per week. The study has been carried out in 2021-2022 with four red varieties in different Spanish wine regions: Garnacha Tinta (Badajoz), Tempranillo (Valladolid), Syrah (Albacete) and Mencía (Lugo). The effects of irrigation frequency on must volatile composition have been evaluated through GC-MS.

The colour pattern of flower arrangements influence wine tasters’ sensory description

The arrangements of flowers and wine counterparts are inextricably linked. Whether a fundamental aspect of tablescaping or acolytes to broader entertainment rituals, they have an entangled history since ancient times. The aim of this contribution is to verify the influence of visually delicate and robust flower arrangements on individual description of wines. Changes in the sensory description of wines were investigated during subjects’ (thirty-two participants) exposure to three different conditions: the presence of delicate, robust, or totally absent flower arrangements. In each condition, the same two wines were blind tasted: a wine previously defined as delicate – a Pinot Noir from Australia, and a wine known for its robust character – a Tannat from Uruguay.

Response of red grape varieties irrigated during the summer to water availability at the end of winter in four Spanish wine-growing regions: berry phenolic composition

Water availability is the most limiting factor for vineyard productivity under Mediterranean conditions. Due to the effects caused by the current climate change, wine-growing regions may face serious soil moisture conservation problems, due to the lower water retention capacity of the soil and higher soil irradiation. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETo) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on berry phenolic composition at harvest.

Characterization of a Sémillon clonal population: exploring genetic diversity, metabolomic profiles, and phenotypic variations

Sémillon is a cultivated grape variety known for contributing to dry and sweet white wine production. However, only seven approved clones have been officially recognized in France[1]. In this study, we aimed to characterize the genetic diversity and metabolomic profiles of a Sémillon clonal population, shedding light on the potential variations within this important grape variety.

Valorization of grapevine leaves: screening of polyphenol composition in 50 cultivars

Grapevine leaves are known to contain different polyphenols such as flavonols, catechins and stilbenes, which are known to act as main contributors for plant defense against pathogens (1). While the composition for some major cultivars has been studied, there is lack of systematic comparison about the content of these compounds in the wide ecodiversity of Vitis vinifera cv. Recent advances in Mass Spectrometry-based Metabolomics allow a wider and more sensitive description of these polyphenols, as instance of those present in leaves (2). Such information could help to better explain leaf traits regarding the development of the leaf or to the plant tolerance to a pathogen. Moreover, these compounds offer appealing applications for human health due to their antioxidant activities.