terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effects of different soil types and soil management on greenhouse gas emissions 

Effects of different soil types and soil management on greenhouse gas emissions 

Abstract

Soil is important in the carbon cycle and the dynamics of greenhouse gases (CO2, CH4 and N2O). Key soil characteristics, such as organic matter content, texture, structure, pH and microbial activity, play a determining role in GHG emissions[1]. The objective of the study is to delimit different types of soil, with different soil management and to be able to verify the differences in CO2, CH4 and N2O emissions. The study was carried out in a vineyard of Bodegas Campo Viejo in Logroño (La Rioja), whose plant material is Vitis vinifera L. cv. Tempranillo. The methodology used was based on the zoning of a 40 ha plot using the Arcgis software, through which 3 different soil types were differentiated thanks to the multispectral information previously obtained from drone flights over the plot. The soil management of the study area is characterized by alternating vegetation cover and tillage, so for each soil type (3) and for each soil management method (2), 3 replicates have been established, making a total of 18 points where the different gases are analyzed. These emissions are measured by a portable gas analyzer using infrared spectroscopy technology (FTIR) that allows measuring the concentration of gases in the field in real time.

The results corroborated that the emissions of the different gases behave differently in each of the soil types, with differences of up to 10 g m-2day-1 of CO2 between them. If we analyse the differences by soil management type, it is worth noting that areas with vegetation cover emit on average 13.9 g m-2 day-1 of CO2, while ploughed areas have average CO2 fluxes of 4.8 g m-2day-1 of CO2.

Acknowledgements: The author would like to thank Bodegas Campo Viejo for making it possible for us to carry out the experiments in their vineyards. We would also like to thank the government of La Rioja for the industrial doctorate contract.

1)  O. T. Yu, R. F. Greenhut, A. T. O’Geen, B. Mackey, W. R. Horwath, and K. L. Steenwerth, “Precipitation Events, Soil Type, and Vineyard Management Practices Influence Soil Carbon Dynamics in a Mediterranean Climate (Lodi, California),” Soil Sci. Soc. Am. J., vol. 83, no. 3, pp. 772–779, 2019.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Estíbaliz Rodrigo García3*, José María Martínez-Vidaurre1, Fernando Martínez de Toda2, Carlos Tarragona Pérez3 Alicia Pou Mir1

1 Instituto de Ciencias de la Vid y del Vino – ICVV (Gobierno de La Rioja, Universidad de La Rioja, CSIC). Ctra. de Burgos, Km. 6. 26007 Logroño (La Rioja)
Univerisidad de La Rioja, Av. Madre de Dios 53, 26006 Logroño (Spain)
Spectralgeo, Parque de los Lirios, 8, 26006 Logroño, La Rioja

Contact the author*

Keywords

soil type, tillage, vegetation cover, greenhouse gases, CO2

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Wine racking in the winery and the use of inerting gases

The O2 uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O2 uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The objective was to study O2 uptake during the racking of a model wine without using inert gases and to compare it with the purging of the destination tank with different inert gases.

Aroma characterization of mold resistant base wines for sparkling wine produced in a warm-temperate area at two different altitudes

In a recent context where consumers pay an increasing attention to sustainability and eco-friendly aspects in the decision-making process, the use of the resistant varieties in the wine sector have returned to the attention. In this context, the use of mould-resistant grape varieties would be an opportunity for sparkling wine producers as it can reduced the pesticide utilization in grape management and hence production costs.
However, the use of the resistant varieties to produce the base wine may be strongly influenced due to its requirements for a particular balance between sugars and acidity to ensure the quality of the final product. In addition, the aromatic profile of base wine plays a crucial role in the perception of the quality of the sparkling wine.

Applicability of grape native yeasts to enhance regional wine typicity

The universalization in wine production has been restricting the imprint of terroir in regional wines, resulting in loss of typicity. Microbes are the main driving force in wine production, conducting fermentation and originating a myriad of metabolites that underly wine aroma. Grape berries harbor an ecological niche composed of filamentous fungi, yeasts and bacteria, which are influenced by the ripening stage, cultivar and region. The research project GrapeMicrobiota gathers a consortium from University of Zaragoza, University of Minho and University of Tours and aims at the isolation of native yeast strains from berries of the wine region Douro, UNESCO World Heritage, towards the production of wines that stand out in the market for their authenticity and for reflecting their region of origin in their aroma.

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition.

Optimization of the acquisition of NIR spectrum in grape must and wine 

The characterization of chemical compounds related with quality of grape must and wine is relevant for the viticulture and enology fields. Analytical methods used for these analyses require expensive instrumentation as well as a long sample preparation processes and the use of chemical solvents. On the other hand, near-infrared (NIR) spectroscopy technique is a simple, fast and non-destructive method for the detection of chemical composition showing a fingerprint of the sample. It has been reported the potential of NIR spectroscopy to measure some enological parameters such as alcohol content, pH, organic acids, glycerol, reducing sugars and phenolic compounds.