terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effects of different soil types and soil management on greenhouse gas emissions 

Effects of different soil types and soil management on greenhouse gas emissions 

Abstract

Soil is important in the carbon cycle and the dynamics of greenhouse gases (CO2, CH4 and N2O). Key soil characteristics, such as organic matter content, texture, structure, pH and microbial activity, play a determining role in GHG emissions[1]. The objective of the study is to delimit different types of soil, with different soil management and to be able to verify the differences in CO2, CH4 and N2O emissions. The study was carried out in a vineyard of Bodegas Campo Viejo in Logroño (La Rioja), whose plant material is Vitis vinifera L. cv. Tempranillo. The methodology used was based on the zoning of a 40 ha plot using the Arcgis software, through which 3 different soil types were differentiated thanks to the multispectral information previously obtained from drone flights over the plot. The soil management of the study area is characterized by alternating vegetation cover and tillage, so for each soil type (3) and for each soil management method (2), 3 replicates have been established, making a total of 18 points where the different gases are analyzed. These emissions are measured by a portable gas analyzer using infrared spectroscopy technology (FTIR) that allows measuring the concentration of gases in the field in real time.

The results corroborated that the emissions of the different gases behave differently in each of the soil types, with differences of up to 10 g m-2day-1 of CO2 between them. If we analyse the differences by soil management type, it is worth noting that areas with vegetation cover emit on average 13.9 g m-2 day-1 of CO2, while ploughed areas have average CO2 fluxes of 4.8 g m-2day-1 of CO2.

Acknowledgements: The author would like to thank Bodegas Campo Viejo for making it possible for us to carry out the experiments in their vineyards. We would also like to thank the government of La Rioja for the industrial doctorate contract.

1)  O. T. Yu, R. F. Greenhut, A. T. O’Geen, B. Mackey, W. R. Horwath, and K. L. Steenwerth, “Precipitation Events, Soil Type, and Vineyard Management Practices Influence Soil Carbon Dynamics in a Mediterranean Climate (Lodi, California),” Soil Sci. Soc. Am. J., vol. 83, no. 3, pp. 772–779, 2019.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Estíbaliz Rodrigo García3*, José María Martínez-Vidaurre1, Fernando Martínez de Toda2, Carlos Tarragona Pérez3 Alicia Pou Mir1

1 Instituto de Ciencias de la Vid y del Vino – ICVV (Gobierno de La Rioja, Universidad de La Rioja, CSIC). Ctra. de Burgos, Km. 6. 26007 Logroño (La Rioja)
Univerisidad de La Rioja, Av. Madre de Dios 53, 26006 Logroño (Spain)
Spectralgeo, Parque de los Lirios, 8, 26006 Logroño, La Rioja

Contact the author*

Keywords

soil type, tillage, vegetation cover, greenhouse gases, CO2

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Do wine sulphites affect gut microbiota? An in vitro study of their digestion in the gastrointestinal tract

“Sulphites” and mainly sulphur dioxide (SO2) is by far the most widely used additive (E-220/INS 220) in winemaking and likely the most difficult to replace. The well-known antioxidant, antioxidasic and antimicrobial properties of SO2 make this molecule a practically essential tool, not only in winemaking, but also in the production of other food products. The current trend in winemaking is the reduction of this unfriendly additive due to its negative effects on health and environmental. In particular, it could cause headaches and intolerance/allergic reactions in sensitive individuals. Wine is considered one of the major contributors of exposure of SO2 in the adult population, when this beverage is included in the diet.

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time.

Influence of different Lachancea thermotolerans strains in wine acidity

Wine acidity is a parameter of great importance that influences different quality factors of the product such as biological stability or organoleptic characteristics. In the current context of climate change, which gives rise to wines with higher levels of ethanol and lower acidity, the biological acidification with yeast species such as Lachancea thermotolerans could be a solution.
In this work, the effect of the inoculation of different L. thermotolerans on the acidity of wine was studied.

Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Plant roots fulfil important functions as they are responsible for the acquisition of water and nutrients, for anchorage and stability, for interaction with symbionts and, in some cases, for the storage of carbohydrates. These functions are associated with the Root System Architecture (RSA, i.e. the form and the spatial arrangement of the roots in the soil). The RSA results from several biological processes (elongation, ramification, mortality…) genetically determined but with high structural plasticity.

Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

In the context of global change, the environmental conditions are expected to be more stressful for viticulture. The choice of the rootstock may play a crucial role to improve the adaptation of viticulture to new biotic and abiotic threats (Ollat et al., 2016). However, the selection of interesting traits in rootstock breeding programs is complex because of the combination of multiple targets in a same ideotype. In this sense, the integration of studies about the genetic architecture for desired biotic and abiotic response traits allow us to identify genomic regions to combine and those with interesting pleiotropic effects.