terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Abstract

Wine contains secondary metabolites derived from aromatic amino acids (AADC), which can determine quality, stability and bioactivity. Several yeast species, as well as some lactic acid bacteria (LAB), can contribute in the production of these aromatic compounds. Winemaking should be studied as a series of microbial interactions, that work as an interconnected network, and can determine the metabolic and analytical profiles of wine. The aim of this work was to select microorganisms (yeast and LAB) based on their potential to produce AADC compounds, such as tyrosol and hydroxytyrosol, and design a microbial consortium that could increase the production of these AADC compounds in wines. Individual screenings of different strains of S. cerevisiae, non-Saccharomyces (non-Sac) and LAB where carried out in synthetic must with 5x of aromatic amino acids. Production of tyrosol and hydroxytyrosol was determined through HPLC-MS/MS. Two strains of S. cerevisiae, two of Zygosaccharomyces rouxii and two ofOenococcus oeni were selected for producing higher concentrations of tyrosol and hydroxytyrosol. Selected strains were then tested in different strategies of mixed inocula fermentations, combining the three microorganisms. Fermentations were done by single or co-inoculation of non-Sac and LAB strains, followed by sequential inoculation of S. cerevisiae strain. Organic acids, population dynamics and production of AADC were evaluated in the eight proposed consortia. Consortia that presented S. cerevisiae Lalvin CLOS and Z. rouxii CW96 produced highest concentrations of hydroxytyrosol (up to 3 µg/L). Moreover, all co-inoculations with LAB completed rapidly malolactic fermentations, and O. oeni did not increase acetic acid production. This study provides information on potential microbial interactions in microbial consortia that can enhance metabolic profile in winemaking.

Acknowledgements: This work has been financed by the project PDI2019-108722RB-C3. AS holds a fellowship of the Ministry of Science and Innovation (PRE2020-096645) and PGS a “Margarita Salas, María Zambrano, Recualificación” grant Spanish Ministry of Universities financed with European Union NextGenerationEU.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Andrea Silva1*, Sandra Martín-Esteban1, Pedro García-Serrano2, María-Jesús Torija1, Gemma Beltran1

1 Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
2 Department of Nutrition and Bromatology, Toxicology and Legal Medicine, Faculty of Pharmacy, Universidad de Sevilla, Sevilla, Spain

Contact the author*

Keywords

microbial consortia, hydroxytyrosol, yeast, lactic acid bacteria

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Perception, liking and emotional response of tropical fruit aromas in Chardonnay wines

Tropical fruit aromas in wines are thought to be important to wine consumers, although there is little research to confirm this statement. With so many wine styles available, it has become important to understand the qualities that are desirable to consumers and how to achieve those qualities. Thiols and esters are compounds that have been found to cause tropical fruit aromas in chardonnay (ref). Fermentation temperature gradients and skin contact were found to increase these compounds using micro scale fermentations. This work aimed to scale up these fermentations/operations to determine if the desired tropical fruit aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

Effects of different soil types and soil management on greenhouse gas emissions 

Soil is important in the carbon cycle and the dynamics of greenhouse gases (CO2, CH4 and N2O). Key soil characteristics, such as organic matter content, texture, structure, pH and microbial activity, play a determining role in GHG emissions[1]. The objective of the study is to delimit different types of soil, with different soil management and to be able to verify the differences in CO2, CH4 and N2O emissions. The study was carried out in a vineyard of Bodegas Campo Viejo in Logroño (La Rioja), whose plant material is Vitis vinifera L. cv. Tempranillo.

is the overall ecological awarness among Spanish winemakers related to their attitudes towards natural wines?

The Agenda 2030 of the EU sets out the main guidelines for transitioning towards a resilient, green and safe economy. To this regard, the wine sector is experiencing an ecological transition in different ways such as increasing the production of ecological crops, or promoting the production of wines under more environmental-friendly and healthier (i.e., lower levels of SO2) products. These alternatives to conventional production are a smaller proportion of wines, in constant growth and demand, and follow alternative and minority practices, which range from sustainable to deeply philosophical thoughts. Among these methods there are organic, biodynamic and, more recently, natural wines.

Nitrogen forms and Iron deficiency: how do Grapevine rootstocks responses change?

Grapevine rootstocks provide protection against environmental biotic and abiotic stresses. Nitrogen (N) and iron (Fe) are growth-limiting factors in many crop plants due to their effects on the chlorophyll and photosynthetic characteristics. Iron nutrition of plants can be significantly affected by different nitrogen forms through altering the uptake ratio of cations and anions, and changing rhizosphere pH. The aim of this study was to investigate the response mechanisms of grapevine rootstocks due to the interaction between different nitrogen forms and iron uptake.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison.