terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Abstract

Wine contains secondary metabolites derived from aromatic amino acids (AADC), which can determine quality, stability and bioactivity. Several yeast species, as well as some lactic acid bacteria (LAB), can contribute in the production of these aromatic compounds. Winemaking should be studied as a series of microbial interactions, that work as an interconnected network, and can determine the metabolic and analytical profiles of wine. The aim of this work was to select microorganisms (yeast and LAB) based on their potential to produce AADC compounds, such as tyrosol and hydroxytyrosol, and design a microbial consortium that could increase the production of these AADC compounds in wines. Individual screenings of different strains of S. cerevisiae, non-Saccharomyces (non-Sac) and LAB where carried out in synthetic must with 5x of aromatic amino acids. Production of tyrosol and hydroxytyrosol was determined through HPLC-MS/MS. Two strains of S. cerevisiae, two of Zygosaccharomyces rouxii and two ofOenococcus oeni were selected for producing higher concentrations of tyrosol and hydroxytyrosol. Selected strains were then tested in different strategies of mixed inocula fermentations, combining the three microorganisms. Fermentations were done by single or co-inoculation of non-Sac and LAB strains, followed by sequential inoculation of S. cerevisiae strain. Organic acids, population dynamics and production of AADC were evaluated in the eight proposed consortia. Consortia that presented S. cerevisiae Lalvin CLOS and Z. rouxii CW96 produced highest concentrations of hydroxytyrosol (up to 3 µg/L). Moreover, all co-inoculations with LAB completed rapidly malolactic fermentations, and O. oeni did not increase acetic acid production. This study provides information on potential microbial interactions in microbial consortia that can enhance metabolic profile in winemaking.

Acknowledgements: This work has been financed by the project PDI2019-108722RB-C3. AS holds a fellowship of the Ministry of Science and Innovation (PRE2020-096645) and PGS a “Margarita Salas, María Zambrano, Recualificación” grant Spanish Ministry of Universities financed with European Union NextGenerationEU.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Andrea Silva1*, Sandra Martín-Esteban1, Pedro García-Serrano2, María-Jesús Torija1, Gemma Beltran1

1 Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
2 Department of Nutrition and Bromatology, Toxicology and Legal Medicine, Faculty of Pharmacy, Universidad de Sevilla, Sevilla, Spain

Contact the author*

Keywords

microbial consortia, hydroxytyrosol, yeast, lactic acid bacteria

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Wine, a sensitive and intricate agricultural product, is being affected by climate change, which accelerates grapevine phenological stages and alters grape composition and ripening. This influences the synthesis of key aroma compounds, shaping wine’s sensory attributes [1]. The complex aroma profile, resulting from compound interactions, presents a metabolomics challenge to identify these indicators and their environmental change responses, which is being addressed using diverse analytical techniques.

Distribution and sensory impact of new oak wood-derived compounds in wines

Despite the numerous research studies carried out in recent years, the study of wine aroma remains of great interest due to its complexity. Wine maturation in oak barrels is described as an important step in the production of quality wines. In fact, oak wood develops several aromatic nuances through its toasting which can be released into the wine. A great deal of work has been performed in order to identify the wood-derived volatile compounds that contribute to wine aroma (e.g., whisky-lactone, maltol, eugenol, guaiacol, vanillin).

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the whole plant. Rootstocks are an important way of adapting to environmental conditions while conserving the typical features of scion varieties. We can exploit the large diversity of rootstocks used worldwide to aid this adaptation. The aim of this study was to characterise rootstock regulation of scion mineral status and its relation with scion development.

Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Mannoproteins are released at the end of alcoholic fermentation due to yeast autolysis [1]. It has been described a positive effect of these molecules on lactic acid bacteria growth [2]. The main objective of this work was the characterization of different mannoproteins extracted from active dry yeast (ADY) and the assessment of their effect on Oenococcus oeni and malolactic fermentation (MLF).