terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Abstract

Wine contains secondary metabolites derived from aromatic amino acids (AADC), which can determine quality, stability and bioactivity. Several yeast species, as well as some lactic acid bacteria (LAB), can contribute in the production of these aromatic compounds. Winemaking should be studied as a series of microbial interactions, that work as an interconnected network, and can determine the metabolic and analytical profiles of wine. The aim of this work was to select microorganisms (yeast and LAB) based on their potential to produce AADC compounds, such as tyrosol and hydroxytyrosol, and design a microbial consortium that could increase the production of these AADC compounds in wines. Individual screenings of different strains of S. cerevisiae, non-Saccharomyces (non-Sac) and LAB where carried out in synthetic must with 5x of aromatic amino acids. Production of tyrosol and hydroxytyrosol was determined through HPLC-MS/MS. Two strains of S. cerevisiae, two of Zygosaccharomyces rouxii and two ofOenococcus oeni were selected for producing higher concentrations of tyrosol and hydroxytyrosol. Selected strains were then tested in different strategies of mixed inocula fermentations, combining the three microorganisms. Fermentations were done by single or co-inoculation of non-Sac and LAB strains, followed by sequential inoculation of S. cerevisiae strain. Organic acids, population dynamics and production of AADC were evaluated in the eight proposed consortia. Consortia that presented S. cerevisiae Lalvin CLOS and Z. rouxii CW96 produced highest concentrations of hydroxytyrosol (up to 3 µg/L). Moreover, all co-inoculations with LAB completed rapidly malolactic fermentations, and O. oeni did not increase acetic acid production. This study provides information on potential microbial interactions in microbial consortia that can enhance metabolic profile in winemaking.

Acknowledgements: This work has been financed by the project PDI2019-108722RB-C3. AS holds a fellowship of the Ministry of Science and Innovation (PRE2020-096645) and PGS a “Margarita Salas, María Zambrano, Recualificación” grant Spanish Ministry of Universities financed with European Union NextGenerationEU.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Andrea Silva1*, Sandra Martín-Esteban1, Pedro García-Serrano2, María-Jesús Torija1, Gemma Beltran1

1 Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
2 Department of Nutrition and Bromatology, Toxicology and Legal Medicine, Faculty of Pharmacy, Universidad de Sevilla, Sevilla, Spain

Contact the author*

Keywords

microbial consortia, hydroxytyrosol, yeast, lactic acid bacteria

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Toasting and grain effect on Tempranillo red wine aged in Quercus petraea barrels

The barrel-making process is widely recognized as a crucial practice that affects the composition of barrel-aged wine. After the drying process, the staves are considered ready for barrel assembly, which includes the processes of bending and toasting the barrel structure. Toasting is considered one of the most critical stages in determining the physical and chemical composition of the staves, which can influence the chemical and sensory composition of the wine aged in barrels made from them [1].

Possible methods of adaptation to the effects of climate change in the Tokaj Wine Region 

Viticulture’s adaptation to the harmful effects of climate change is globally the biggest challenge of the near future. Short, extremely intensive rainfalls and longer periods of drought are getting more frequent in the Tokaj Wine Region, where the majority of the vineyards are cultivated on steep slopes. Hence, erosion has high risk, especially when combined with the loess-based soils on about ten percent of the region. The environmentally beneficial cover crop and mulch usage can effectively reduce the risk of erosion, according to research done by the Tokaj Wine Region Research Institute of Viticulture and Oenology.

Genetic prospecting of rainfed viticulture in the region with the largest cultivated area in Chile

The Maule region hosts up to a third of the total area of vineyards in Chile, in an environment where ancient practices inherited from the colonial past coexist with modernity and dynamism that include technified irrigation and fine vines. In the dry land of Maule there is a viticulture that has subsisted with ancient vines and traditions transmitted over generations, and there is little clarity about the origin and classification of the Maule viticulture, giving rise to the use of different concepts as synonyms to describe the ancient, minority, patrimonial or Criollas vines. In order to characterize and protect the ancient material, we studied the genetic diversity of a territorial collection that covers 80% of the communes of the region, prioritizing plants established more than 40-60 years ago.

Effect of irrigation in cover cropping vineyards

Cover cropping in vineyard is a sustainable and alternative soil management system to conventional tillage that is gaining more and more importance among winegrowers and is being promoted, among other organizations, by the European Union through the eco-schemes of the Common Agricultural Policy.
However, the use of cover crops in Mediterranean viticultural environments is conditioned, to a large extent, by the availability of irrigation water which, in a context of global warming like the one we are experiencing, must be adjusted to savings strategies, supplying to the vine only what it needs in each moment.

Glucosidase and esterase salivary activities and their involvement in consumer’s wine sensory perception and liking

Wine flavour is the integration of distinct physiologically defined sensory systems that combine taste, aroma and trigeminal sensations, and it is a key determinant factor for the acceptance of wine by consumers. Volatile compounds, are important contributors to wine flavour, specially to aroma. These small and low-boiling point compounds are easily released into the air allowing to enter and move within the nasal or oral cavities where they can bind the olfactory receptors. Additionally, wine also contains aroma precursors, which are non-volatile compounds, but that can be broken down releasing volatile odorants. During wine tasting, all these chemicals (volatiles and non-volatiles) can be submitted to the action of salivary enzymes.