terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Abstract

Wine contains secondary metabolites derived from aromatic amino acids (AADC), which can determine quality, stability and bioactivity. Several yeast species, as well as some lactic acid bacteria (LAB), can contribute in the production of these aromatic compounds. Winemaking should be studied as a series of microbial interactions, that work as an interconnected network, and can determine the metabolic and analytical profiles of wine. The aim of this work was to select microorganisms (yeast and LAB) based on their potential to produce AADC compounds, such as tyrosol and hydroxytyrosol, and design a microbial consortium that could increase the production of these AADC compounds in wines. Individual screenings of different strains of S. cerevisiae, non-Saccharomyces (non-Sac) and LAB where carried out in synthetic must with 5x of aromatic amino acids. Production of tyrosol and hydroxytyrosol was determined through HPLC-MS/MS. Two strains of S. cerevisiae, two of Zygosaccharomyces rouxii and two ofOenococcus oeni were selected for producing higher concentrations of tyrosol and hydroxytyrosol. Selected strains were then tested in different strategies of mixed inocula fermentations, combining the three microorganisms. Fermentations were done by single or co-inoculation of non-Sac and LAB strains, followed by sequential inoculation of S. cerevisiae strain. Organic acids, population dynamics and production of AADC were evaluated in the eight proposed consortia. Consortia that presented S. cerevisiae Lalvin CLOS and Z. rouxii CW96 produced highest concentrations of hydroxytyrosol (up to 3 µg/L). Moreover, all co-inoculations with LAB completed rapidly malolactic fermentations, and O. oeni did not increase acetic acid production. This study provides information on potential microbial interactions in microbial consortia that can enhance metabolic profile in winemaking.

Acknowledgements: This work has been financed by the project PDI2019-108722RB-C3. AS holds a fellowship of the Ministry of Science and Innovation (PRE2020-096645) and PGS a “Margarita Salas, María Zambrano, Recualificación” grant Spanish Ministry of Universities financed with European Union NextGenerationEU.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Andrea Silva1*, Sandra Martín-Esteban1, Pedro García-Serrano2, María-Jesús Torija1, Gemma Beltran1

1 Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
2 Department of Nutrition and Bromatology, Toxicology and Legal Medicine, Faculty of Pharmacy, Universidad de Sevilla, Sevilla, Spain

Contact the author*

Keywords

microbial consortia, hydroxytyrosol, yeast, lactic acid bacteria

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

White grape must processed by UHPH as an alternative to SO2 addition: Effect on the phenolic composition in three varieties

The quantity and distribution of polyphenols in musts play a fundamental role in the white winemaking. This is because these substances are exposed to oxidation reactions, which are catalysed by the polyphenol oxidase (PPO), leading to a decrease in the quality of the wines produced. PPO is inactivated by SO2, but currently, due to the restrictions of the legislation, other methodologies are being investigated. Ultra-High Pressure Homogenization (UHPH) is a non-thermal physic technology that exerts an ultrahigh pressure pumping (>200 MPa) of a fluid through a valve in a continuous system.

Sparkling wines and atypical aging: investigating the risk of refermentation

Sparkling wine (SW) production entails a two-steps process where grape must undergoes a primary fermentation to produce a base wine (BW) which is then refermented to become a SW. This process allows for the development of a new physicochemical profile characterized by the presence of foam and a different organoleptic profile.

Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Every year, viticulture is facing several outbreaks caused by established diseases, such as downy mildew and grey mould, which possess different life cycles and modes of infection. To cope with these different aggressors, grapevine must recognize them and arm itself with an arsenal of defense strategies.
The regulation of secondary metabolites is one of the first reactions of plants upon pathogen challenge. Their rapid biosynthesis can highly contribute to strengthen the defense mechanisms allowing the plant to adapt, defend and survive.

Investigation of cellulose nanofiber-based films used as a protective layer to reduce absorption of smoke phenols into wine grapes

Volatile phenols from wildfire smoke are absorbed by wine grapes, resulting in undesirable smoky and ashy sensory attributes in the affected wine.[1] Unfortunately the severity of wildfires is increasing, particularly when grapes are ripening on the vine. The unwanted flavors of the wine prompted a need for solutions to prevent the uptake of smoke compounds into wine grapes. Films using cellulose nanofibers as the coating forming matrix were developed as an innovative means to prevent smoke phenols from entering Pinot noir grapes. Different film formulations were tested by incorporating low methoxy pectin or chitosan.

Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Several studies have tried to develop different methods to study the photodegradation of wine in an accelerated way, trying to elucidate the effect of light on the wine compounds[1]. In a previous study, our team developed a chamber that speeds up the photodegradation of rosé wine[2]. In the present work we have tried to establish a correlation between irradiation times in accelerated conditions and the natural exposure to the cycles of light that usually exist in markets or at home.