terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Abstract

Wine contains secondary metabolites derived from aromatic amino acids (AADC), which can determine quality, stability and bioactivity. Several yeast species, as well as some lactic acid bacteria (LAB), can contribute in the production of these aromatic compounds. Winemaking should be studied as a series of microbial interactions, that work as an interconnected network, and can determine the metabolic and analytical profiles of wine. The aim of this work was to select microorganisms (yeast and LAB) based on their potential to produce AADC compounds, such as tyrosol and hydroxytyrosol, and design a microbial consortium that could increase the production of these AADC compounds in wines. Individual screenings of different strains of S. cerevisiae, non-Saccharomyces (non-Sac) and LAB where carried out in synthetic must with 5x of aromatic amino acids. Production of tyrosol and hydroxytyrosol was determined through HPLC-MS/MS. Two strains of S. cerevisiae, two of Zygosaccharomyces rouxii and two ofOenococcus oeni were selected for producing higher concentrations of tyrosol and hydroxytyrosol. Selected strains were then tested in different strategies of mixed inocula fermentations, combining the three microorganisms. Fermentations were done by single or co-inoculation of non-Sac and LAB strains, followed by sequential inoculation of S. cerevisiae strain. Organic acids, population dynamics and production of AADC were evaluated in the eight proposed consortia. Consortia that presented S. cerevisiae Lalvin CLOS and Z. rouxii CW96 produced highest concentrations of hydroxytyrosol (up to 3 µg/L). Moreover, all co-inoculations with LAB completed rapidly malolactic fermentations, and O. oeni did not increase acetic acid production. This study provides information on potential microbial interactions in microbial consortia that can enhance metabolic profile in winemaking.

Acknowledgements: This work has been financed by the project PDI2019-108722RB-C3. AS holds a fellowship of the Ministry of Science and Innovation (PRE2020-096645) and PGS a “Margarita Salas, María Zambrano, Recualificación” grant Spanish Ministry of Universities financed with European Union NextGenerationEU.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Andrea Silva1*, Sandra Martín-Esteban1, Pedro García-Serrano2, María-Jesús Torija1, Gemma Beltran1

1 Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
2 Department of Nutrition and Bromatology, Toxicology and Legal Medicine, Faculty of Pharmacy, Universidad de Sevilla, Sevilla, Spain

Contact the author*

Keywords

microbial consortia, hydroxytyrosol, yeast, lactic acid bacteria

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Understanding the impact of rising temperatures due to climate change on aromatic compositions in Malbec wines from Mendoza, Argentina

Mendoza is one of Argentina’s most important and outstanding wine regions producing the renowned Malbec wines due to its optimal soil and weather conditions. However, the effects of 21st-century climate change would negatively impact Malbec wines quality. This study investigated the effect of temperature increase and the impact of plant hormone abscisic acid (ABA) used to mitigate the negative effect of temperature increase on Malbec wines aromatic composition through GC-MS. Four treatments were applied on vines at field condition: Control, Control + 3 ºC, ABA and ABA + 3 ºC.

The tolerance of grapevine rootstocks to water deficit is related to root morphology and xylem anatomy traits 

Climate change is altering water balances, thereby compromising water availability for crops. In grapevine, the strategic selection of genotypes more tolerant to soil water deficit can improve the resilience of the vineyard under this scenario. Previous studies demonstrated that root anatomical and morphological traits determine vine performance under water deficit conditions. Therefore, 13 ungrafted rootstock genotypes, 6 commercial (420 A, 41 B, Evex 13-5, Fercal, 140 Ru y 110 R), and 7 from new breeding programs (RG2, RG3, RG4, RG7, RG8, RG9 and RM2) were evaluated in pots during 2021 and 2022.

Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Brandy is a spirit drink made from “wine spirit” (<86% Alcohol by Volume – ABV; high levels of congeners and they are mainly less volatile than ethanol), it may be blended with a “wine distillate” (<94.8%ABV; low levels of congeners and these are mainly more volatile than ethanol), as long as that distillate does not exceed a maximum of 50% of the alcoholic content of the finished product[1]. Brandy must be aged for at least 6 months in oak casks with <1000L of capacity. During ageing, changes occur in colour, flavour, and aroma that improve the quality of the original distillate.

The use of plasma activated water in barrel disinfection: impact on oak wood composition

The use of barrels is a practice that improves the quality of wines. The porous structure of wood favors the accumulation of microorganisms that can deteriorate the quality of wines so that barrel cleaning and sanitizing treatments are essential. The burning of sulphur discs has been the most common practice in winemaking because ots biocide effect. Nevertheless, its effectiveness is still insufficient and it is harmful for human health.

The exploitation of Croatian grapevine genetic resources for the breeding of new resistant cultivars 

Croatian viticulture is mainly based on native grapevine varieties susceptible to various diseases and pests, which leads to unsustainable use of large amounts of pesticides. The sustainable development of viticulture in the future will only be possible by increasing the resistance of the grapevine through the development of new resistant varieties. Breeding programs have been launched in the leading wine-growing countries to develop resistant varieties possessing high-quality levels. Native cultivars from Croatia are not included in the breeding programs of other countries.