terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Performance of Selected Uruguayan Native Yeasts for Tannat Wine Production at Pilot Scale

Performance of Selected Uruguayan Native Yeasts for Tannat Wine Production at Pilot Scale

Abstract

The wine industry is increasing the demand for indigenous yeasts adapted to the terroir to produce unique wines that reflect the distinctive characteristics of each region. In our group, we have identified and characterized 60 native yeast strains isolated from a vineyard in Maldonado-Uruguay, in which three strains stood out: Saccharomyces cerevisiae T193FS, Saturnispora diversa T191FS, and Starmerella bacillaris T193MS. Their oenological potential was evaluated at a semi-pilot scale in Tannat must vinification in the wine cellar to have a more precise and representative evaluation of the final product. Fermentations were carried out with these strains as pure starter cultures in 200L fermentation tanks, compared to the commercial reference strain. The three native strains consumed 98% of the must sugars with good ethanol production (between 14-16%) and low volatile acidity, suggesting that alcoholic fermentation generates dry wines with an appropriate alcohol level and low residual sugar. Pilot-scale fermentation trials demonstrated the strong fructophilic character of St. bacillaris, with high glycerol production (11%) and lower ethanol yield, which could be of particular interest, for example, in producing low-alcohol wines. Wines produced with these native strains, evaluated by a panel of expert winemakers, stood out for presenting greater fruity notes compared to the reference strain, especially St. bacillaris T193MS, with descriptors associated with plum, raisins, and candied fruit. These findings correlated with an increase in the concentration of volatile compounds determined by GC-MS, where a significant increase in the content of esters, nor isoprenoids, and terpenes compounds was found in the vinification produced with the St. bacillaris T193MS compared to the other studied strains.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

P. González-Pombo, S. de Ovalle, G. Morera
Área bioquímica, DepBio, Facultad de Química, Universidad de la República. Montevideo-Uruguay

Contact the author*

Keywords

native-yeast, wine, aroma

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Under-vine management effects on grapevine vegetative growth, gas exchange and rhizosphere microbial diversity

The use of cover crops under the vines might be an alternative to the use of herbicides or tillage, improving grapevine quality and soil characteristics. The aim of this research was to study the implications of different management strategies of the soil under the vines (herbicide, cultivation or cover crops) on grapevine growth, water and nutritional status, gas exchange parameters and belowground microbial communities.
The experimental design consisted in 4 treatments applied on 35L-potted Tempranillo vegetative grapevines with 10 replicates each grown in an open-top greenhouse in 2022 and 2023. Treatments included two cover crop species (Trifolium fragiferum and Bromus repens), herbicide (glyphosate al 36%) and an untreated control.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison. In all solutions were added 1ml/l of Tween 80 ® surfactant.

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest.

Pre-breeding for developing heat stress resilient grape varieties to ensure yield 

Climate change has numerous detrimental consequences and creates new challenges for viticulture around the world. Transitory or constant high temperatures frequently associated with an excess of sunlight (UV) can cause a variety of physiological disorders, such as sunburn. Diverse environmental factors and the plant’s response mechanisms to stress determine the symptoms. Grapevine berry sunburn leads to a drastic reduction in yield, and may eventually decline berry quality. Consequently, this poses a significant risk to the winegrowers.

New oenological criteria for selecting strains of Lachancea thermotolerans for wine technology

The study conducted various fermentations of different grape juices using various strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Because of the new conditions caused by climate change, wine acidity must be influenced as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real options to mitigate the impact of climate change in wine production.