terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Performance of Selected Uruguayan Native Yeasts for Tannat Wine Production at Pilot Scale

Performance of Selected Uruguayan Native Yeasts for Tannat Wine Production at Pilot Scale

Abstract

The wine industry is increasing the demand for indigenous yeasts adapted to the terroir to produce unique wines that reflect the distinctive characteristics of each region. In our group, we have identified and characterized 60 native yeast strains isolated from a vineyard in Maldonado-Uruguay, in which three strains stood out: Saccharomyces cerevisiae T193FS, Saturnispora diversa T191FS, and Starmerella bacillaris T193MS. Their oenological potential was evaluated at a semi-pilot scale in Tannat must vinification in the wine cellar to have a more precise and representative evaluation of the final product. Fermentations were carried out with these strains as pure starter cultures in 200L fermentation tanks, compared to the commercial reference strain. The three native strains consumed 98% of the must sugars with good ethanol production (between 14-16%) and low volatile acidity, suggesting that alcoholic fermentation generates dry wines with an appropriate alcohol level and low residual sugar. Pilot-scale fermentation trials demonstrated the strong fructophilic character of St. bacillaris, with high glycerol production (11%) and lower ethanol yield, which could be of particular interest, for example, in producing low-alcohol wines. Wines produced with these native strains, evaluated by a panel of expert winemakers, stood out for presenting greater fruity notes compared to the reference strain, especially St. bacillaris T193MS, with descriptors associated with plum, raisins, and candied fruit. These findings correlated with an increase in the concentration of volatile compounds determined by GC-MS, where a significant increase in the content of esters, nor isoprenoids, and terpenes compounds was found in the vinification produced with the St. bacillaris T193MS compared to the other studied strains.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

P. González-Pombo, S. de Ovalle, G. Morera
Área bioquímica, DepBio, Facultad de Química, Universidad de la República. Montevideo-Uruguay

Contact the author*

Keywords

native-yeast, wine, aroma

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Extreme vintages affect grape varieties differently: a case study from a cool climate wine region

Eger wine region is located on the northern border of grapevine cultivation zone. In the cool climate, terroir selection is one of the foundations of quality wine making. However, climate change will have a significant impact on these high value-added vineyards. This study presents a case study from 2021 and 2022 with the investigation of three grape varieties (Kadarka, Syrah, Furmint). The experiment was conducted in a steep-sloped vineyard (Nagy-Eged hill) with a southern exposure.

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes.

Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Wine, a sensitive and intricate agricultural product, is being affected by climate change, which accelerates grapevine phenological stages and alters grape composition and ripening. This influences the synthesis of key aroma compounds, shaping wine’s sensory attributes [1]. The complex aroma profile, resulting from compound interactions, presents a metabolomics challenge to identify these indicators and their environmental change responses, which is being addressed using diverse analytical techniques.

Characterization of a Sémillon clonal population: exploring genetic diversity, metabolomic profiles, and phenotypic variations

Sémillon is a cultivated grape variety known for contributing to dry and sweet white wine production. However, only seven approved clones have been officially recognized in France[1]. In this study, we aimed to characterize the genetic diversity and metabolomic profiles of a Sémillon clonal population, shedding light on the potential variations within this important grape variety.

Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Mannoproteins are released at the end of alcoholic fermentation due to yeast autolysis [1]. It has been described a positive effect of these molecules on lactic acid bacteria growth [2]. The main objective of this work was the characterization of different mannoproteins extracted from active dry yeast (ADY) and the assessment of their effect on Oenococcus oeni and malolactic fermentation (MLF).