terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Oenological compatibility of biocontrol yeasts applied to wine grapes 

Oenological compatibility of biocontrol yeasts applied to wine grapes 

Abstract

Antagonistic yeasts applied to wine grapes must be compatible with the thereafter winemaking process, avoiding competition with the fermentative Saccharomyces cerevisiae or affecting wine flavour. Therefore, fifteen epiphytic yeasts (6 Metschnikowia sp., 6 Hanseniaspora uvarum, 3 Starmerella bacillaris) previously selected for its biocontrol ability against Alternaria on wine grapes were evaluate for possible competition with S. cerevisiae by the Niche Overlap Index (NOI) employing YNB agar media with 10 mM of 17 different carbonate sources present in wine grapes (proline, asparagine, alanine, glutamic acid, tirosine, arginine, lisine, methionine, glicine, malic acid, tartaric acid, fructose, melibiose, raffinose, rhamnose, sucrose, glucose). Also, acetic acid production in YPD-calcium carbonate agar medium, H2S production in Biggy agar medium and the production of “Brett” character or other odour defects in pasteurized must with p-coumaric acid were evaluated. As result, all Metschnikowia sp. strains showed coexistence with S. cerevisiae because the NOI (number of common carbon sources used by the two microorganisms/number of carbon sources used only by the antagonist) was <0.9 (0.42). Meanwhile, all H. uvarum and S. bacillaris strains showed competition with S. cerevisiae (NOI=1) and between them (NOI=1). On the other hand, almost all H. uvarum(5 of 6) and all S. bacillaris strains produced acetic acid, whereas none of the Metschnikowia sp. showed acetic acid production. All the yeasts analysed produced H2S in Biggy agar medium. Nevertheless, the majority of them exhibited no defect or in certain cases a slight solvent or acetate odour (different from “Brett character”) in must. Therefore, among all the biocontrol yeasts evaluated, Metschinikowia sp. strains showed more compatibility features than the rest of the strains and its oenological behaviour should be further studied under vinification conditions.

Acknowledgements: Marie Sklodowska-Curie Research and Innovation Staff Exchange project (872394-vWISE-H2020-MSCA-RISE-2019) – European Comission.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Luciana Paola Prendes1*, María Gabriela Merín 1, Claire Courtel2, Carina Morales3, Juliana Garau1, Vilma Inés Morata de Ambrosini 1

1ICAI (Instituto de Ciencias Aplicadas a la Industria, CONICET-Facultad de Ciencias Aplicadas, UNCuyo), Bernardo de Irigoyen 375, San Rafael (Mendoza), Argentina.
2Oniris (École nationale vétérinaire, agroalimentaire et de l’alimentation de Nantes-Atlantique), Rue de la Géraudière, CS 82225, 44322 Nantes, France.
3Facultad de Ciencias Aplicadas (UNCuyo), Bernardo de Irigoyen 375, San Rafael (Mendoza), Argentina.

Contact the author*

Keywords

biocontrol yeasts, NOI, detrimental oenological characters

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time.

Wine odors: chemicals, physicochemical and perceptive processes involved in their perception

The odors of wines are diverse, complex and dynamic and much research has been devoted to the understanding of their chemical bases. However, while the “basic” chemical part of the problem, namely the identity of the chemicals responsible for the different odor nuances, was satisfactorily solved years ago, there are some relevant questions precluding a clear understanding. These questions are related to the physicochemical interactions determining the effective volatilities of the odorants and, particularly, to the perceptual interactions between different odor molecules affecting in different ways to the final sensory outputs.

Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Bacterial antibiotic resistance is a major current health problem. Polyphenols have demonstrated antibacterial activity, and in this work we studied the effect of oenological polyphenols on the growth of intestinal multidrug-resistant strains of human and animal origin. Two Enterococcus faecium strains, resistant to vancomycin and other antibiotics, and four Escherichia coli strains, resistant to ampicillin and other antibiotics, were included in this study. All strains showed multidrug resistant phenotypes and genotypes to at least two antibiotic families.