terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Oenological compatibility of biocontrol yeasts applied to wine grapes 

Oenological compatibility of biocontrol yeasts applied to wine grapes 

Abstract

Antagonistic yeasts applied to wine grapes must be compatible with the thereafter winemaking process, avoiding competition with the fermentative Saccharomyces cerevisiae or affecting wine flavour. Therefore, fifteen epiphytic yeasts (6 Metschnikowia sp., 6 Hanseniaspora uvarum, 3 Starmerella bacillaris) previously selected for its biocontrol ability against Alternaria on wine grapes were evaluate for possible competition with S. cerevisiae by the Niche Overlap Index (NOI) employing YNB agar media with 10 mM of 17 different carbonate sources present in wine grapes (proline, asparagine, alanine, glutamic acid, tirosine, arginine, lisine, methionine, glicine, malic acid, tartaric acid, fructose, melibiose, raffinose, rhamnose, sucrose, glucose). Also, acetic acid production in YPD-calcium carbonate agar medium, H2S production in Biggy agar medium and the production of “Brett” character or other odour defects in pasteurized must with p-coumaric acid were evaluated. As result, all Metschnikowia sp. strains showed coexistence with S. cerevisiae because the NOI (number of common carbon sources used by the two microorganisms/number of carbon sources used only by the antagonist) was <0.9 (0.42). Meanwhile, all H. uvarum and S. bacillaris strains showed competition with S. cerevisiae (NOI=1) and between them (NOI=1). On the other hand, almost all H. uvarum(5 of 6) and all S. bacillaris strains produced acetic acid, whereas none of the Metschnikowia sp. showed acetic acid production. All the yeasts analysed produced H2S in Biggy agar medium. Nevertheless, the majority of them exhibited no defect or in certain cases a slight solvent or acetate odour (different from “Brett character”) in must. Therefore, among all the biocontrol yeasts evaluated, Metschinikowia sp. strains showed more compatibility features than the rest of the strains and its oenological behaviour should be further studied under vinification conditions.

Acknowledgements: Marie Sklodowska-Curie Research and Innovation Staff Exchange project (872394-vWISE-H2020-MSCA-RISE-2019) – European Comission.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Luciana Paola Prendes1*, María Gabriela Merín 1, Claire Courtel2, Carina Morales3, Juliana Garau1, Vilma Inés Morata de Ambrosini 1

1ICAI (Instituto de Ciencias Aplicadas a la Industria, CONICET-Facultad de Ciencias Aplicadas, UNCuyo), Bernardo de Irigoyen 375, San Rafael (Mendoza), Argentina.
2Oniris (École nationale vétérinaire, agroalimentaire et de l’alimentation de Nantes-Atlantique), Rue de la Géraudière, CS 82225, 44322 Nantes, France.
3Facultad de Ciencias Aplicadas (UNCuyo), Bernardo de Irigoyen 375, San Rafael (Mendoza), Argentina.

Contact the author*

Keywords

biocontrol yeasts, NOI, detrimental oenological characters

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The environmental footprint of selected vineyard management practices: A case study from Logroño (La Rioja) Spain

Viticulture is globally important for socioeconomic and environmental reasons. The EU is globally leading grape and wine production, and Spain is among the top grape and wine producers. As climate change affects viticulture, mitigation and adaptation are crucial for protecting grape production. In this research work, data on viticultural management practices such as soil cultivation, irrigation, energy, machinery, plant protection and the use of fertilizers from vineyards located in Logroño (La Rioja) have been obtained.

Reduction of the height of the canopy in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

Global warming is accelerating the technological ripening of the grape, with a loss of acidity, which requires that vineyard management can delay ripening to avoid it. The source-sink relation is essential for grape ripening, since it affects the distribution of photosynthates and substances derived from plant metabolism. A work is proposed to know the response of the vineyard to the drastic reduction of the foliar surface by trim down the shoots in cv.

Grapevine adaptation to drought and resistance to Neofusicoccum parvum, causal agent of Botryosphaeria dieback

The sustainability of viticulture in response to climate change has been addressed mainly considering agronomic impacts, such as water management and diseases, either separately or together.
In grapevines, there is strong evidence that different genotypes respond differently to biotic and abiotic stresses. A screening was conducted on various local cultivars in response to drought and Neofusicoum parvum infection aiming to evaluate their susceptibility to abiotic stress and resistance to fungal diseases.

Optimization of the acquisition of NIR spectrum in grape must and wine 

The characterization of chemical compounds related with quality of grape must and wine is relevant for the viticulture and enology fields. Analytical methods used for these analyses require expensive instrumentation as well as a long sample preparation processes and the use of chemical solvents. On the other hand, near-infrared (NIR) spectroscopy technique is a simple, fast and non-destructive method for the detection of chemical composition showing a fingerprint of the sample. It has been reported the potential of NIR spectroscopy to measure some enological parameters such as alcohol content, pH, organic acids, glycerol, reducing sugars and phenolic compounds.

Exploring relationships among grapevine chemical and physiological parameters and mycobiome composition under drought stress

Improving our knowledge on biotic and abiotic factors that influence the composition of the grapevine mycobiome is of great agricultural significance, due to potential effects on plant health, productivity, and wine characteristics. Among the various environmental factors affecting the morphological, physiological, biochemical and molecular attributes of grapevine, drought stress is one of the most severe, becoming increasingly an issue worldwide.