terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Oenological compatibility of biocontrol yeasts applied to wine grapes 

Oenological compatibility of biocontrol yeasts applied to wine grapes 

Abstract

Antagonistic yeasts applied to wine grapes must be compatible with the thereafter winemaking process, avoiding competition with the fermentative Saccharomyces cerevisiae or affecting wine flavour. Therefore, fifteen epiphytic yeasts (6 Metschnikowia sp., 6 Hanseniaspora uvarum, 3 Starmerella bacillaris) previously selected for its biocontrol ability against Alternaria on wine grapes were evaluate for possible competition with S. cerevisiae by the Niche Overlap Index (NOI) employing YNB agar media with 10 mM of 17 different carbonate sources present in wine grapes (proline, asparagine, alanine, glutamic acid, tirosine, arginine, lisine, methionine, glicine, malic acid, tartaric acid, fructose, melibiose, raffinose, rhamnose, sucrose, glucose). Also, acetic acid production in YPD-calcium carbonate agar medium, H2S production in Biggy agar medium and the production of “Brett” character or other odour defects in pasteurized must with p-coumaric acid were evaluated. As result, all Metschnikowia sp. strains showed coexistence with S. cerevisiae because the NOI (number of common carbon sources used by the two microorganisms/number of carbon sources used only by the antagonist) was <0.9 (0.42). Meanwhile, all H. uvarum and S. bacillaris strains showed competition with S. cerevisiae (NOI=1) and between them (NOI=1). On the other hand, almost all H. uvarum(5 of 6) and all S. bacillaris strains produced acetic acid, whereas none of the Metschnikowia sp. showed acetic acid production. All the yeasts analysed produced H2S in Biggy agar medium. Nevertheless, the majority of them exhibited no defect or in certain cases a slight solvent or acetate odour (different from “Brett character”) in must. Therefore, among all the biocontrol yeasts evaluated, Metschinikowia sp. strains showed more compatibility features than the rest of the strains and its oenological behaviour should be further studied under vinification conditions.

Acknowledgements: Marie Sklodowska-Curie Research and Innovation Staff Exchange project (872394-vWISE-H2020-MSCA-RISE-2019) – European Comission.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Luciana Paola Prendes1*, María Gabriela Merín 1, Claire Courtel2, Carina Morales3, Juliana Garau1, Vilma Inés Morata de Ambrosini 1

1ICAI (Instituto de Ciencias Aplicadas a la Industria, CONICET-Facultad de Ciencias Aplicadas, UNCuyo), Bernardo de Irigoyen 375, San Rafael (Mendoza), Argentina.
2Oniris (École nationale vétérinaire, agroalimentaire et de l’alimentation de Nantes-Atlantique), Rue de la Géraudière, CS 82225, 44322 Nantes, France.
3Facultad de Ciencias Aplicadas (UNCuyo), Bernardo de Irigoyen 375, San Rafael (Mendoza), Argentina.

Contact the author*

Keywords

biocontrol yeasts, NOI, detrimental oenological characters

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effects of laccase from Botrytis cinerea on the oxidative degradation kinetics of the five natural grape anthocyanins

Enzymatic browning[1] is an oxidation process that occurs in many foods that increases the brown colour[2]. This problem is especially harmful in the wine industry[3]. especially when the grapes are infected by grey rot since this fung release the oxidative enzyme laccase[4]. In the particular case of red wines, the presence of laccase implies the deterioration of the red colour and can even cause the precipitation of the coloring matter (oxidasic haze)[5].

Effects of progeny in the modulation of the response to water stress in isohydric and anisohydric varieties

Each grapevine variety has a specific water use regulation response under drought, and it is still unclear whether this regulation results from innate genotypic behavior (iso- and anisohydric), or is a response to environmental factors, namely recurrent water stress priming effects. In the present work, we explored the influence of the field-grown genotypes’ drought memory in the drought-response phenotype of their vegetative progenies, in Trincadeira (isohydric) and Castelão (anisohydric) varieties under a drought event followed by recovery in a glasshouse. Cuttings from both cultivars subjected to full irrigation (FI) and non-irrigation (NI) treatments for 5 consecutive years were used.

Impact of polyclonal selection for abiotic stress tolerance on the yield and must quality traits of grapevine varieties

The effects of climate change in viticulture are currently a major concern, with heat waves and drought affecting yield, wine quality, and in extreme cases, even plant survival. Ancient grapevine varieties have high intravarietal genetic variability that so far has been explored successfully to improve yield and must quality. Currently, there is little information available on intravarietal variability regarding responses to stress. In the current work, the intravarietal genetic variability of several Portuguese varieties was studied for yield, must quality, and tolerance to abiotic stress, through indirect, rapid, and nondestructive measurements carried out in the field.

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.

Defoliation combined with exogenous ABA application results in slower ripening and improved anthocyanin profile

Reducing sugar accumulation in grape (Vitis vinifera L.) berries may be a way to mitigate the effect of climate change. Managing canopy and crop load is an effective way to do so, however, reducing canopy size has been demonstrated to induce undesirable effects on anthocyanins. The aim of this study was to test if an application of exogenous ABA on the grape berries of defoliated vines (⅔ of the leaves removed) can result in slower sugar accumulation while maintaining grape and wine quality. An experiment with defoliation and exogenous ABA application on directly on clusters (factorial design 2×2) was performed with ‘Tempranillo’ fruit-bearing cuttings.