terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Oenological compatibility of biocontrol yeasts applied to wine grapes 

Oenological compatibility of biocontrol yeasts applied to wine grapes 

Abstract

Antagonistic yeasts applied to wine grapes must be compatible with the thereafter winemaking process, avoiding competition with the fermentative Saccharomyces cerevisiae or affecting wine flavour. Therefore, fifteen epiphytic yeasts (6 Metschnikowia sp., 6 Hanseniaspora uvarum, 3 Starmerella bacillaris) previously selected for its biocontrol ability against Alternaria on wine grapes were evaluate for possible competition with S. cerevisiae by the Niche Overlap Index (NOI) employing YNB agar media with 10 mM of 17 different carbonate sources present in wine grapes (proline, asparagine, alanine, glutamic acid, tirosine, arginine, lisine, methionine, glicine, malic acid, tartaric acid, fructose, melibiose, raffinose, rhamnose, sucrose, glucose). Also, acetic acid production in YPD-calcium carbonate agar medium, H2S production in Biggy agar medium and the production of “Brett” character or other odour defects in pasteurized must with p-coumaric acid were evaluated. As result, all Metschnikowia sp. strains showed coexistence with S. cerevisiae because the NOI (number of common carbon sources used by the two microorganisms/number of carbon sources used only by the antagonist) was <0.9 (0.42). Meanwhile, all H. uvarum and S. bacillaris strains showed competition with S. cerevisiae (NOI=1) and between them (NOI=1). On the other hand, almost all H. uvarum(5 of 6) and all S. bacillaris strains produced acetic acid, whereas none of the Metschnikowia sp. showed acetic acid production. All the yeasts analysed produced H2S in Biggy agar medium. Nevertheless, the majority of them exhibited no defect or in certain cases a slight solvent or acetate odour (different from “Brett character”) in must. Therefore, among all the biocontrol yeasts evaluated, Metschinikowia sp. strains showed more compatibility features than the rest of the strains and its oenological behaviour should be further studied under vinification conditions.

Acknowledgements: Marie Sklodowska-Curie Research and Innovation Staff Exchange project (872394-vWISE-H2020-MSCA-RISE-2019) – European Comission.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Luciana Paola Prendes1*, María Gabriela Merín 1, Claire Courtel2, Carina Morales3, Juliana Garau1, Vilma Inés Morata de Ambrosini 1

1ICAI (Instituto de Ciencias Aplicadas a la Industria, CONICET-Facultad de Ciencias Aplicadas, UNCuyo), Bernardo de Irigoyen 375, San Rafael (Mendoza), Argentina.
2Oniris (École nationale vétérinaire, agroalimentaire et de l’alimentation de Nantes-Atlantique), Rue de la Géraudière, CS 82225, 44322 Nantes, France.
3Facultad de Ciencias Aplicadas (UNCuyo), Bernardo de Irigoyen 375, San Rafael (Mendoza), Argentina.

Contact the author*

Keywords

biocontrol yeasts, NOI, detrimental oenological characters

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

New tool to evaluate color modifications during oxygen consumption in white and red wines

Measuring the effect of oxygen consumption on the color of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine can consume without significantly altering its color. The changes produced in wine after being exposed to high oxygen concentrations have been studied by different authors, but in all cases the wine has been analyzed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen[1,2].

The interplay between water deficit and nitrogen and potassium nutrition in Vitis vinifera L.

Climate change is expected to provoke an increase in the frequency and intensity of drought events and water scarcity that will have detrimental effects on photosynthesis and plant yield. To sustain an appropriate plant yield under sub-optimal conditions, a common practice is the application of high amounts of fertilizers with negative environmental consequences. The present study aims at evaluating the interplay between water and nutrient availability, namely nitrogen (N) and potassium (K), in two grapevine cultivars with a different sensitivity to water shortage stress. Two-year-old Vitis Vinifera cv. Cabernet Sauvignon and Grenache grapevine plants grafted on SO4 rootstock have been transferred in pots under semi-environmental conditions.

Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Several studies have tried to develop different methods to study the photodegradation of wine in an accelerated way, trying to elucidate the effect of light on the wine compounds[1]. In a previous study, our team developed a chamber that speeds up the photodegradation of rosé wine[2]. In the present work we have tried to establish a correlation between irradiation times in accelerated conditions and the natural exposure to the cycles of light that usually exist in markets or at home.

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).

Uncovering the interplay between Copper and SO2 tolerance in Saccharomyces cerevisiae

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...