terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Influence of p-Coumaric Acid and Micronutrients on Growth and 4-Ethylphenol Production by Brettanomyces bruxellensis

Influence of p-Coumaric Acid and Micronutrients on Growth and 4-Ethylphenol Production by Brettanomyces bruxellensis

Abstract

The wine spoilage caused by Brettanomyces bruxellensis is one of the global concerns for winemakers. Detecting the presence of B. bruxellensis using routine laboratory culture techniques becomes challenging when cells enter the viable but not culturable (VBNC) state. This study aims to investigate the impact of p-coumaric acid (a volatile phenol precursor) and micronutrients on B. bruxellensis’ culturability, viability, and volatile phenol production under sulfite stress. In red wine, exposure to a high sulfite dose (100.00 mg L-1 potassium metabisulfite) resulted in immediate cell death, followed by a recovery of culturability after two weeks. Surprisingly, such “dead” or non-culturable cells continued to produce 4-ethylphenol (4-EP). However, in the model wine medium, a death phase was observed at only 50.00 mg L-1 potassium metabisulfite (PMB), without any signs of growth recovery or 4-EP production. Nevertheless, when the model wine medium was supplemented with minerals and vitamins, growth recovery and 4-EP production were observed, indicating that the survival of sulfite-stressed state cells is dependent on the micronutrient’s availability. It has been reported by removing important micronutrients such as trace vitamins like biotin can lead to prevent the growth of B. bruxellensis (3). Moreover, we observed that B. bruxellensis can utilize p-coumaric acid (p-CA) as an energy source in the model wine, with a specific growth rate of 0.0134 and 0.0142 h-1 when supplied with 0.10 and 1.00 mM of p-CA, respectively. Additionally, sulfite-stressed yeast cells could synthesize ATP through proton efflux while utilizing p-CA. The p-CA, a constituent of both grapes and wine not only serves as a carbon source but also enables the cell to survive and produce 4-EP under sulfite stress. Our findings lay the foundation for future research on the importance of p-CA in managing yeast survival under sulfite stress.

Acknowledgements: The authors thank FCT, Portugal, for funding through DL 57/2016/CP1382/CT0012 to Mahesh Chandra, and strategic project UID/AGR/04129/2020 (LEAF).

References:

  1. Malfeito-Ferreira, M. (2018) Two Decades of “Horse Sweat” Taint and Brettanomyces Yeasts in Wine: Where Do We Stand Now? Beverages, 4, (2), 32. doi:10.3390/beverages4020032.
  2. Du Toit WJ. et al. (2005) The Effect of Sulphur Dioxide and Oxygen on the Viability and Culturability of a Strain of Acetobacter Pasteurianus and a Strain of Brettanomyces bruxellensis Isolated from Wine. J App Microbiol, 98, 862–871. Doi: 10.1111/j.1365-2672.2004.02549.x
  3. Von Cosmos, N.H. and Edwards, C.G. (2016) Use of Nutritional Requirements for Brettanomyces bruxellensis to Limit Infections in Wine. Fermentation, 2, 17. Doi: 3390/fermentation2030017

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Mahesh Chandra 1,*, Patricia Branco1,2 , Catarina Prista1 and Manuel Malfeito-Ferreira1

1 Laboratório de Microbiologia, Linking Landscape Environment Agriculture and Food Research Center (LEAF), Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349–017 Lisboa, Portugal
2 School of Engineering, Lusófona University, 1749-024 Lisboa, Portugal

Contact the author*

Keywords

wine spoilage, sulfur dioxide, Brettanomyces bruxellensis, p-coumaric acid, VBNC, 4-ethylphenol, wine micronutrients, volatile phenols

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Ecophysiological characterisation of terroir effects on Vitis vinifera L. Chardonnay and pinot noir in south african cool climate regions

Terroir encompasses environmental (climate, geology, soil and topography), genetic (cultivar and clone) and human factors (oenological and viticultural practices). Climate change brings about shifts in the suitability of a region for the growth of specific grapevine cultivars. This study focused on climatic and fruit parameters (berry size, weight, pH, total acidity (TA) and phenolics) to characterise the terroir effect in Vitis vinifera L. cultivars Chardonnay and Pinot Noir vineyards in the Cape South Coast region (Walker Bay and Elgin).

Differential gene expression and novel gene models in 110 Richter uncovered through RNA Sequencing of roots under stress

The appearance of the Phylloxera pest in the 19th century in Europe caused dramatical damages in grapevine diversity. To mitigate these losses, grapevine growers resorted to using crosses of different Vitis species, such as 110 Richter (110R) (V. berlandieri x V. rupestris), which has been invaluable for studying adaptations to stress responses in vineyards. Recently, a high quality chromosome scale assembly of 110R was released, but the available gene models were predicted without using as evidence transcriptional sequences obtained from roots, that are crucial organs in rootstock, and they may express certain genes exclusively. Therefore, we employed RNA sequencing reads of 110R roots under different stress conditions to predict new gene models in each haplotype of 110R under different stresses.

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum).

Understanding the impact of rising temperatures due to climate change on aromatic compositions in Malbec wines from Mendoza, Argentina

Mendoza is one of Argentina’s most important and outstanding wine regions producing the renowned Malbec wines due to its optimal soil and weather conditions. However, the effects of 21st-century climate change would negatively impact Malbec wines quality. This study investigated the effect of temperature increase and the impact of plant hormone abscisic acid (ABA) used to mitigate the negative effect of temperature increase on Malbec wines aromatic composition through GC-MS. Four treatments were applied on vines at field condition: Control, Control + 3 ºC, ABA and ABA + 3 ºC.

Early defoliation positively enhances bioactive composition of berries with no effect on cuticle characteristics

Leaf removal in the fruit-zone has been employed to improve cluster light exposure and ventilation and therefore increase metabolite accumulation and reduce botrytis incidence in berries. When applied before flowering (early defoliation – ED), it can also decrease cluster compactness and regulate yield in high-yielding varieties. This study aimed to evaluate the impact of ED on the physiology and metabolism of Aragonez (syn. Tempranillo) berries along the ripening period. The experiment was set up in 2013 at a commercial vineyard located in the Lisbon winegrowing region.