terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Influence of p-Coumaric Acid and Micronutrients on Growth and 4-Ethylphenol Production by Brettanomyces bruxellensis

Influence of p-Coumaric Acid and Micronutrients on Growth and 4-Ethylphenol Production by Brettanomyces bruxellensis

Abstract

The wine spoilage caused by Brettanomyces bruxellensis is one of the global concerns for winemakers. Detecting the presence of B. bruxellensis using routine laboratory culture techniques becomes challenging when cells enter the viable but not culturable (VBNC) state. This study aims to investigate the impact of p-coumaric acid (a volatile phenol precursor) and micronutrients on B. bruxellensis’ culturability, viability, and volatile phenol production under sulfite stress. In red wine, exposure to a high sulfite dose (100.00 mg L-1 potassium metabisulfite) resulted in immediate cell death, followed by a recovery of culturability after two weeks. Surprisingly, such “dead” or non-culturable cells continued to produce 4-ethylphenol (4-EP). However, in the model wine medium, a death phase was observed at only 50.00 mg L-1 potassium metabisulfite (PMB), without any signs of growth recovery or 4-EP production. Nevertheless, when the model wine medium was supplemented with minerals and vitamins, growth recovery and 4-EP production were observed, indicating that the survival of sulfite-stressed state cells is dependent on the micronutrient’s availability. It has been reported by removing important micronutrients such as trace vitamins like biotin can lead to prevent the growth of B. bruxellensis (3). Moreover, we observed that B. bruxellensis can utilize p-coumaric acid (p-CA) as an energy source in the model wine, with a specific growth rate of 0.0134 and 0.0142 h-1 when supplied with 0.10 and 1.00 mM of p-CA, respectively. Additionally, sulfite-stressed yeast cells could synthesize ATP through proton efflux while utilizing p-CA. The p-CA, a constituent of both grapes and wine not only serves as a carbon source but also enables the cell to survive and produce 4-EP under sulfite stress. Our findings lay the foundation for future research on the importance of p-CA in managing yeast survival under sulfite stress.

Acknowledgements: The authors thank FCT, Portugal, for funding through DL 57/2016/CP1382/CT0012 to Mahesh Chandra, and strategic project UID/AGR/04129/2020 (LEAF).

References:

  1. Malfeito-Ferreira, M. (2018) Two Decades of “Horse Sweat” Taint and Brettanomyces Yeasts in Wine: Where Do We Stand Now? Beverages, 4, (2), 32. doi:10.3390/beverages4020032.
  2. Du Toit WJ. et al. (2005) The Effect of Sulphur Dioxide and Oxygen on the Viability and Culturability of a Strain of Acetobacter Pasteurianus and a Strain of Brettanomyces bruxellensis Isolated from Wine. J App Microbiol, 98, 862–871. Doi: 10.1111/j.1365-2672.2004.02549.x
  3. Von Cosmos, N.H. and Edwards, C.G. (2016) Use of Nutritional Requirements for Brettanomyces bruxellensis to Limit Infections in Wine. Fermentation, 2, 17. Doi: 3390/fermentation2030017

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Mahesh Chandra 1,*, Patricia Branco1,2 , Catarina Prista1 and Manuel Malfeito-Ferreira1

1 Laboratório de Microbiologia, Linking Landscape Environment Agriculture and Food Research Center (LEAF), Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349–017 Lisboa, Portugal
2 School of Engineering, Lusófona University, 1749-024 Lisboa, Portugal

Contact the author*

Keywords

wine spoilage, sulfur dioxide, Brettanomyces bruxellensis, p-coumaric acid, VBNC, 4-ethylphenol, wine micronutrients, volatile phenols

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Advancing grapevine science through genomic research

The seminar will examine the complexities and prospects of genomic research on Vitis species, characterize by exceptionally high heterozygosity and common interspecific gene flow. The seminar will showcase case studies highlighting the critical role of diploid genome references in grape research, specifically in areas such as aroma development, disease resistance, and domestication traits. It will also address the emerging focus on pangenomes within the Vitis genus, particularly in the context of genetic studies on naturally interbreeding populations.

Effects of progeny in the modulation of the response to water stress in isohydric and anisohydric varieties

Each grapevine variety has a specific water use regulation response under drought, and it is still unclear whether this regulation results from innate genotypic behavior (iso- and anisohydric), or is a response to environmental factors, namely recurrent water stress priming effects. In the present work, we explored the influence of the field-grown genotypes’ drought memory in the drought-response phenotype of their vegetative progenies, in Trincadeira (isohydric) and Castelão (anisohydric) varieties under a drought event followed by recovery in a glasshouse. Cuttings from both cultivars subjected to full irrigation (FI) and non-irrigation (NI) treatments for 5 consecutive years were used.

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.

Genetic prospecting of rainfed viticulture in the region with the largest cultivated area in Chile

The Maule region hosts up to a third of the total area of vineyards in Chile, in an environment where ancient practices inherited from the colonial past coexist with modernity and dynamism that include technified irrigation and fine vines. In the dry land of Maule there is a viticulture that has subsisted with ancient vines and traditions transmitted over generations, and there is little clarity about the origin and classification of the Maule viticulture, giving rise to the use of different concepts as synonyms to describe the ancient, minority, patrimonial or Criollas vines. In order to characterize and protect the ancient material, we studied the genetic diversity of a territorial collection that covers 80% of the communes of the region, prioritizing plants established more than 40-60 years ago.

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.