terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Influence of p-Coumaric Acid and Micronutrients on Growth and 4-Ethylphenol Production by Brettanomyces bruxellensis

Influence of p-Coumaric Acid and Micronutrients on Growth and 4-Ethylphenol Production by Brettanomyces bruxellensis

Abstract

The wine spoilage caused by Brettanomyces bruxellensis is one of the global concerns for winemakers. Detecting the presence of B. bruxellensis using routine laboratory culture techniques becomes challenging when cells enter the viable but not culturable (VBNC) state. This study aims to investigate the impact of p-coumaric acid (a volatile phenol precursor) and micronutrients on B. bruxellensis’ culturability, viability, and volatile phenol production under sulfite stress. In red wine, exposure to a high sulfite dose (100.00 mg L-1 potassium metabisulfite) resulted in immediate cell death, followed by a recovery of culturability after two weeks. Surprisingly, such “dead” or non-culturable cells continued to produce 4-ethylphenol (4-EP). However, in the model wine medium, a death phase was observed at only 50.00 mg L-1 potassium metabisulfite (PMB), without any signs of growth recovery or 4-EP production. Nevertheless, when the model wine medium was supplemented with minerals and vitamins, growth recovery and 4-EP production were observed, indicating that the survival of sulfite-stressed state cells is dependent on the micronutrient’s availability. It has been reported by removing important micronutrients such as trace vitamins like biotin can lead to prevent the growth of B. bruxellensis (3). Moreover, we observed that B. bruxellensis can utilize p-coumaric acid (p-CA) as an energy source in the model wine, with a specific growth rate of 0.0134 and 0.0142 h-1 when supplied with 0.10 and 1.00 mM of p-CA, respectively. Additionally, sulfite-stressed yeast cells could synthesize ATP through proton efflux while utilizing p-CA. The p-CA, a constituent of both grapes and wine not only serves as a carbon source but also enables the cell to survive and produce 4-EP under sulfite stress. Our findings lay the foundation for future research on the importance of p-CA in managing yeast survival under sulfite stress.

Acknowledgements: The authors thank FCT, Portugal, for funding through DL 57/2016/CP1382/CT0012 to Mahesh Chandra, and strategic project UID/AGR/04129/2020 (LEAF).

References:

  1. Malfeito-Ferreira, M. (2018) Two Decades of “Horse Sweat” Taint and Brettanomyces Yeasts in Wine: Where Do We Stand Now? Beverages, 4, (2), 32. doi:10.3390/beverages4020032.
  2. Du Toit WJ. et al. (2005) The Effect of Sulphur Dioxide and Oxygen on the Viability and Culturability of a Strain of Acetobacter Pasteurianus and a Strain of Brettanomyces bruxellensis Isolated from Wine. J App Microbiol, 98, 862–871. Doi: 10.1111/j.1365-2672.2004.02549.x
  3. Von Cosmos, N.H. and Edwards, C.G. (2016) Use of Nutritional Requirements for Brettanomyces bruxellensis to Limit Infections in Wine. Fermentation, 2, 17. Doi: 3390/fermentation2030017

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Mahesh Chandra 1,*, Patricia Branco1,2 , Catarina Prista1 and Manuel Malfeito-Ferreira1

1 Laboratório de Microbiologia, Linking Landscape Environment Agriculture and Food Research Center (LEAF), Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349–017 Lisboa, Portugal
2 School of Engineering, Lusófona University, 1749-024 Lisboa, Portugal

Contact the author*

Keywords

wine spoilage, sulfur dioxide, Brettanomyces bruxellensis, p-coumaric acid, VBNC, 4-ethylphenol, wine micronutrients, volatile phenols

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The colour pattern of flower arrangements influence wine tasters’ sensory description

The arrangements of flowers and wine counterparts are inextricably linked. Whether a fundamental aspect of tablescaping or acolytes to broader entertainment rituals, they have an entangled history since ancient times. The aim of this contribution is to verify the influence of visually delicate and robust flower arrangements on individual description of wines. Changes in the sensory description of wines were investigated during subjects’ (thirty-two participants) exposure to three different conditions: the presence of delicate, robust, or totally absent flower arrangements.

The exploitation of Croatian grapevine genetic resources for the breeding of new resistant cultivars 

Croatian viticulture is mainly based on native grapevine varieties susceptible to various diseases and pests, which leads to unsustainable use of large amounts of pesticides. The sustainable development of viticulture in the future will only be possible by increasing the resistance of the grapevine through the development of new resistant varieties. Breeding programs have been launched in the leading wine-growing countries to develop resistant varieties possessing high-quality levels. Native cultivars from Croatia are not included in the breeding programs of other countries.

Differential gene expression and novel gene models in 110 Richter uncovered through RNA Sequencing of roots under stress

The appearance of the Phylloxera pest in the 19th century in Europe caused dramatical damages in grapevine diversity. To mitigate these losses, grapevine growers resorted to using crosses of different Vitis species, such as 110 Richter (110R) (V. berlandieri x V. rupestris), which has been invaluable for studying adaptations to stress responses in vineyards. Recently, a high quality chromosome scale assembly of 110R was released, but the available gene models were predicted without using as evidence transcriptional sequences obtained from roots, that are crucial organs in rootstock, and they may express certain genes exclusively. Therefore, we employed RNA sequencing reads of 110R roots under different stress conditions to predict new gene models in each haplotype of 110R under different stresses.

Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Brandy is a spirit drink made from “wine spirit” (<86% Alcohol by Volume – ABV; high levels of congeners and they are mainly less volatile than ethanol), it may be blended with a “wine distillate” (<94.8%ABV; low levels of congeners and these are mainly more volatile than ethanol), as long as that distillate does not exceed a maximum of 50% of the alcoholic content of the finished product[1]. Brandy must be aged for at least 6 months in oak casks with <1000L of capacity. During ageing, changes occur in colour, flavour, and aroma that improve the quality of the original distillate.

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.