terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Influence of p-Coumaric Acid and Micronutrients on Growth and 4-Ethylphenol Production by Brettanomyces bruxellensis

Influence of p-Coumaric Acid and Micronutrients on Growth and 4-Ethylphenol Production by Brettanomyces bruxellensis

Abstract

The wine spoilage caused by Brettanomyces bruxellensis is one of the global concerns for winemakers. Detecting the presence of B. bruxellensis using routine laboratory culture techniques becomes challenging when cells enter the viable but not culturable (VBNC) state. This study aims to investigate the impact of p-coumaric acid (a volatile phenol precursor) and micronutrients on B. bruxellensis’ culturability, viability, and volatile phenol production under sulfite stress. In red wine, exposure to a high sulfite dose (100.00 mg L-1 potassium metabisulfite) resulted in immediate cell death, followed by a recovery of culturability after two weeks. Surprisingly, such “dead” or non-culturable cells continued to produce 4-ethylphenol (4-EP). However, in the model wine medium, a death phase was observed at only 50.00 mg L-1 potassium metabisulfite (PMB), without any signs of growth recovery or 4-EP production. Nevertheless, when the model wine medium was supplemented with minerals and vitamins, growth recovery and 4-EP production were observed, indicating that the survival of sulfite-stressed state cells is dependent on the micronutrient’s availability. It has been reported by removing important micronutrients such as trace vitamins like biotin can lead to prevent the growth of B. bruxellensis (3). Moreover, we observed that B. bruxellensis can utilize p-coumaric acid (p-CA) as an energy source in the model wine, with a specific growth rate of 0.0134 and 0.0142 h-1 when supplied with 0.10 and 1.00 mM of p-CA, respectively. Additionally, sulfite-stressed yeast cells could synthesize ATP through proton efflux while utilizing p-CA. The p-CA, a constituent of both grapes and wine not only serves as a carbon source but also enables the cell to survive and produce 4-EP under sulfite stress. Our findings lay the foundation for future research on the importance of p-CA in managing yeast survival under sulfite stress.

Acknowledgements: The authors thank FCT, Portugal, for funding through DL 57/2016/CP1382/CT0012 to Mahesh Chandra, and strategic project UID/AGR/04129/2020 (LEAF).

References:

  1. Malfeito-Ferreira, M. (2018) Two Decades of “Horse Sweat” Taint and Brettanomyces Yeasts in Wine: Where Do We Stand Now? Beverages, 4, (2), 32. doi:10.3390/beverages4020032.
  2. Du Toit WJ. et al. (2005) The Effect of Sulphur Dioxide and Oxygen on the Viability and Culturability of a Strain of Acetobacter Pasteurianus and a Strain of Brettanomyces bruxellensis Isolated from Wine. J App Microbiol, 98, 862–871. Doi: 10.1111/j.1365-2672.2004.02549.x
  3. Von Cosmos, N.H. and Edwards, C.G. (2016) Use of Nutritional Requirements for Brettanomyces bruxellensis to Limit Infections in Wine. Fermentation, 2, 17. Doi: 3390/fermentation2030017

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Mahesh Chandra 1,*, Patricia Branco1,2 , Catarina Prista1 and Manuel Malfeito-Ferreira1

1 Laboratório de Microbiologia, Linking Landscape Environment Agriculture and Food Research Center (LEAF), Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349–017 Lisboa, Portugal
2 School of Engineering, Lusófona University, 1749-024 Lisboa, Portugal

Contact the author*

Keywords

wine spoilage, sulfur dioxide, Brettanomyces bruxellensis, p-coumaric acid, VBNC, 4-ethylphenol, wine micronutrients, volatile phenols

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Physico-chemical properties of vine pruning residues with potential as enological additive

Grapes are one of the world’s primary fruit crops, and pruning activities generate high amounts of annual wood wastes [1]. These pruning shoots contain valuable phenolic compounds and could have numerous potential applications [1,2]. Consequently, the aim of this work was to evaluate the physico-chemical properties of vine pruning residues with potential as enological additives. For this purpose, grapevine shoots from 12 varieties grown in Chile were collected during the winter of 2021.

Qualitative and productive characterization of a minority variety: ‘Branco lexítimo’ in DO Ribeira Sacra (Spain)

The actual climate changes, together with the strong regulation of the European Union and Spanish government, in search of sustainable viticulture, have forced the recovery of minority varieties, expanding the range of grape varieties, as well as the possible development of wines with unique profiles. In the Ribeira Sacra DO (Spain), a comparative study of the agronomic and qualitative behavior of the ‘Branco lexítimo’ variety has been carried out, compared to the majority white variety in the DO: ‘Godello’, located in the same study plot, with identic soil and climatic conditions. The study contemplated the analysis of phenology and leaf water potential, as well as the productive results and the analysis of the must quality, during four seasons: 2018 – 2021.

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.

Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Drought is one of the main challenges for viticulture in the context of global change. The choice of rootstock could be leveraged for vineyard adaptation to drought as we can improve plant performance without modifying the scion variety. However, most of the existing rootstocks, selected over a century ago, have a narrow genetic background which could compromise their adaptive potential.

Using climate services to project grapevine varietal adequation under climate change – application to cv. Tempranillo in the Douro wine region

Vine growth circumstances are becoming warmer and drier because of climate change. Higher temperatures advance ripening to a point in the season less conducive to the production of fine wine, while drought reduces yields (Van Leeuwen et al., 2019). Several wine-producing regions around the world have already recognized threats to their viticultural viability (Santos et al., 2020). An economical and cost-effective strategy for adaptation is the employment of late-ripening, drought-resistant plant material (varieties, clones, and rootstocks).