Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties
Abstract
Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon. Plants were cultivated in Temperature Gradient Greenhouses under either high (700 ppm) or ambient (400 ppm) CO2 concentration in combination with ambient or elevated (ambient+4˚C) air temperatures. Half of grapevines from each variety were inoculated with a consortium of five AMF. Growth of shoots and rootstocks was measured, as well as predawn and midday water potentials, gas exchange (photosynthesis, leaf conductance and transpiration) and ionome in leaves. Plant hydraulic conductivity was also estimated. Results indicated that the effect of mycorrhizal symbiosis on growth, water status, leaf conductance and ionome is dependent on grapevine variety; however, within the same variety, the presence of AMF colonizing roots modulates the effect of environmental factors (CO2 concentration and air temperature) on plant water status, gas exchange and mineral nutrition.
Acknowledgements: To A. Urdiain, M. Oyarzun & H. Santesteban for technical support, Asociación de Amigos (UNAV) for D. Kozikova’s scholarship, Bioera SL for AMF, Ministerio de Ciencia e Innovación (Gobierno España) funded the research (Ref. PID2020-118337RB-IOO)
References:
1) Ollat N. et al. (2015) Vigour conferred by rootstock: hypotheses and direction for research. Bulletin de l’OIV, Paris 76: 581-595, ISSN: 0059-7127
2) Hugalde I.P. et al. (2020) Modeling vegetative vigour in grapevine: unraveling underlying mechanisms. Heliyon e05708, DOI 10.1016/j.heliyon.2020.e05708
DOI:
Issue: ICGWS 2023
Type: Poster
Authors
1Environmental Biology department- Group of Stress Physiology in Plants. School of Sciences-BIOMA, University of Navarra. Irunlarrea 1, 31008-Pamplona, Spain
2Earth and Environmental Sciences department, School of Sciences, University of Alicante, Alicante, Spain
Contact the author*
Keywords
climate change, gas exchange, hydraulic conductivity, ionome, mycorrhizal symbiosis, red wine grape varieties