terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Exploring relationships among grapevine chemical and physiological parameters and mycobiome composition under drought stress

Exploring relationships among grapevine chemical and physiological parameters and mycobiome composition under drought stress

Abstract

Improving our knowledge on biotic and abiotic factors that influence the composition of the grapevine mycobiome is of great agricultural significance, due to potential effects on plant health, productivity, and wine characteristics. Among the various environmental factors affecting the morphological, physiological, biochemical and molecular attributes of grapevine, drought stress is one of the most severe, becoming increasingly an issue worldwide.

In the present study we assessed the influence of water deficit and scion cultivar on the diversity and composition of fungal communities and chemical characteristics of the berries and leaves. Based on physiological parameters (pre-dawn water potential and gas-exchange) a sampling area was designed in the Eger Wine Region, Hungary, affected by moderate drought stress. We generated DNA metabarcoding data, and statistically compared the richness, relative abundance, and composition of several functional groups of fungi in two cultivars (Vitis vinifera cv. Furmint, and cv. Kadarka), which are partly explained by measured differences in chemical composition of leaves and berries and physiological traits of leaves. The richness and relative abundance of fungal functional groups statistically differ among berry and leaf, and control samples compared to those under drought stress, but less so among cultivars. We also detected cultivar-level and stress-related differences in the macro- and microelement content of the leaves, and in acidity and sugar concentration of berries. Finally, the correlation between fungal community composition and physiological variables in leaves is noteworthy, and merits further research to explore causality. Our findings offer novel insights into the microbial dynamics of grapevine considering drought stress, plant chemistry and physiology, with implications for viticulture.

This project was supported by the Research and development to improve sustainability and climate resilience of viticulture and oenology at the Eszterházy Károly Catholic University (TKP2021-NKTA-16).

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Anna Molnár1,2, József Geml1,2, Adrienn Geiger1,2,3, Carla Mota Leal2,3, Glodia Kgobe2,3, Adrienn Mária Tóth4, Szabolcs Villangó4, Miklós Lovas1, Nóra Bakos-Barczi1, Kálmán Zoltán Váczy1,2, György Lőrincz4, Zsolt Zsófi4

1Food and Wine Research Institute, Research and Development Center, Eszterházy Károly Catholic University, Leányka u. 6, 3300 Eger, Hungary
2ELKH–EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Leányka u. 6, 3300 Eger, Hungary
3Doctoral School of Environmental Sciences, Hungarian University of Agricultural and Life Sciences, Páter K. u. 1, 2100 Gödöllő, Hungary
4Institute for Viticulture and Enology, Faculty of Natural Sciences, Eszterházy Károly Catholic University, Leányka u. 6, 3300 Eger, Hungary

Contact the author*

Keywords

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Preliminary study of extraction of polysaccharides from pomace by high powered ultrasonic combined with enzymes

Red grape pomace can be an important source of polysaccharides, but currently they are little studied and even less with viable and environmental extraction processes (green extraction). These green techniques must be able to break the cell wall so that the compounds contained in the cells, including polysaccharides, are released and can have a great influence on extraction yields, the chemical structure of polysaccharides and applications in wines. Amongst the emerging green techniques most applied to the extraction of bioactive compounds, such as polysaccharides, high-power ultrasound (US) and enzyme-assisted extraction stand out.

Chemical profiling and sensory analysis of wines from resistant hybrid grape cultivars vs conventional wines

Recently, there has been a shift toward sustainable wine production, according to EU policy (F2F and Green Deal), to reduce pesticide usage, improve workplace health and safety, and prevent the impacts of climate change. These trends have gained the interest of consumers and winemakers. The cultivation of disease resistant hybrid grape cultivars (DRHGC), known as ‘PIWI’ grapes can help with these objectives [1]. This study aimed to profile white and red wines produced from DRHGC in South Tyrol (Italy). Wines produced from DRHGCs were compared with conventional wines produced by the same wineries. The measured parameters were residual sugars, organic acids, alcohol content, pigments and other phenolics by LC-QqQ/MS, colorimetric indexes (CIELab); and volatile profiles (HS-SPME-GCxGC-ToF/MS [2]).

Towards the understanding of wine distillation in the production of brandy de Jerez. Chemical and sensory characterization of two distillation methods: continuous and batch distillation

Brandy de Jerez (BJ) is a spirit drink made exclusively from spirits and wine distillates and is characterized by the use of casks for aging that previously contained Sherries. The quality and sensory complexity of BJ depend on the raw materials and some factors: grape variety, conditions during processing the wine and its distillation, as well as the aging in the cask. Therefore, the original compounds of the grapes from which it comes are of great interest being in most cases the Airén variety. Their relationship with the quality of the musts and the wines obtained from them has been studied (1) and varies each year of harvest depending on the weather conditions (2).

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.

Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Mannoproteins are released at the end of alcoholic fermentation due to yeast autolysis [1]. It has been described a positive effect of these molecules on lactic acid bacteria growth [2]. The main objective of this work was the characterization of different mannoproteins extracted from active dry yeast (ADY) and the assessment of their effect on Oenococcus oeni and malolactic fermentation (MLF).