terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Exploring relationships among grapevine chemical and physiological parameters and mycobiome composition under drought stress

Exploring relationships among grapevine chemical and physiological parameters and mycobiome composition under drought stress

Abstract

Improving our knowledge on biotic and abiotic factors that influence the composition of the grapevine mycobiome is of great agricultural significance, due to potential effects on plant health, productivity, and wine characteristics. Among the various environmental factors affecting the morphological, physiological, biochemical and molecular attributes of grapevine, drought stress is one of the most severe, becoming increasingly an issue worldwide.

In the present study we assessed the influence of water deficit and scion cultivar on the diversity and composition of fungal communities and chemical characteristics of the berries and leaves. Based on physiological parameters (pre-dawn water potential and gas-exchange) a sampling area was designed in the Eger Wine Region, Hungary, affected by moderate drought stress. We generated DNA metabarcoding data, and statistically compared the richness, relative abundance, and composition of several functional groups of fungi in two cultivars (Vitis vinifera cv. Furmint, and cv. Kadarka), which are partly explained by measured differences in chemical composition of leaves and berries and physiological traits of leaves. The richness and relative abundance of fungal functional groups statistically differ among berry and leaf, and control samples compared to those under drought stress, but less so among cultivars. We also detected cultivar-level and stress-related differences in the macro- and microelement content of the leaves, and in acidity and sugar concentration of berries. Finally, the correlation between fungal community composition and physiological variables in leaves is noteworthy, and merits further research to explore causality. Our findings offer novel insights into the microbial dynamics of grapevine considering drought stress, plant chemistry and physiology, with implications for viticulture.

This project was supported by the Research and development to improve sustainability and climate resilience of viticulture and oenology at the Eszterházy Károly Catholic University (TKP2021-NKTA-16).

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Anna Molnár1,2, József Geml1,2, Adrienn Geiger1,2,3, Carla Mota Leal2,3, Glodia Kgobe2,3, Adrienn Mária Tóth4, Szabolcs Villangó4, Miklós Lovas1, Nóra Bakos-Barczi1, Kálmán Zoltán Váczy1,2, György Lőrincz4, Zsolt Zsófi4

1Food and Wine Research Institute, Research and Development Center, Eszterházy Károly Catholic University, Leányka u. 6, 3300 Eger, Hungary
2ELKH–EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Leányka u. 6, 3300 Eger, Hungary
3Doctoral School of Environmental Sciences, Hungarian University of Agricultural and Life Sciences, Páter K. u. 1, 2100 Gödöllő, Hungary
4Institute for Viticulture and Enology, Faculty of Natural Sciences, Eszterházy Károly Catholic University, Leányka u. 6, 3300 Eger, Hungary

Contact the author*

Keywords

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

New tool to evaluate color modifications during oxygen consumption in white and red wines

Measuring the effect of oxygen consumption on the color of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine can consume without significantly altering its color. The changes produced in wine after being exposed to high oxygen concentrations have been studied by different authors, but in all cases the wine has been analyzed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen[1,2].

Discovering the process of noble rot: fungal ecology of grape berries during the noble rot transformation in different vineyards of the Tokaj wine region

Botrytis cinerea, a well-known grapevine pathogen, has more than 1200 host plants causing grey rot in grapevine berries. However, it can also result in a desirable phenomenon called noble rot under specific microclimate conditions. An extraordinary demonstration of this natural process can be observed in the creation of aszú wines within Hungary’s Tokaj wine region. Beside B. cinerea other fungi and yeasts are involved in the secondary metabolic development of the grape berry which contributes to the sensory and analytical characterization of noble rot wines.

Sparkling wines and atypical aging: investigating the risk of refermentation

Sparkling wine (SW) production entails a two-steps process where grape must undergoes a primary fermentation to produce a base wine (BW) which is then refermented to become a SW. This process allows for the development of a new physicochemical profile characterized by the presence of foam and a different organoleptic profile.

Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Brandy is a spirit drink made from “wine spirit” (<86% Alcohol by Volume – ABV; high levels of congeners and they are mainly less volatile than ethanol), it may be blended with a “wine distillate” (<94.8%ABV; low levels of congeners and these are mainly more volatile than ethanol), as long as that distillate does not exceed a maximum of 50% of the alcoholic content of the finished product[1]. Brandy must be aged for at least 6 months in oak casks with <1000L of capacity. During ageing, changes occur in colour, flavour, and aroma that improve the quality of the original distillate.

Advancing grapevine science through genomic research

The seminar will examine the complexities and prospects of genomic research on Vitis species, characterize by exceptionally high heterozygosity and common interspecific gene flow. The seminar will showcase case studies highlighting the critical role of diploid genome references in grape research, specifically in areas such as aroma development, disease resistance, and domestication traits. It will also address the emerging focus on pangenomes within the Vitis genus, particularly in the context of genetic studies on naturally interbreeding populations.