Comparison of the effects of hormone- and natural-based elicitors on key metabolic pathways in cv. Tempranillo
Abstract
One of the most important effects of climate change in wine-growing areas is the advance of phenological stages, especially concerning early berry ripening. In the hottest seasons, this results in a lack of synchrony between sugar and phenolic ripeness. In order to cope with this fact, a general effort is being made by researchers and growers aiming at delaying ripening through different strategies. One of the proposed approaches is the application of elicitors. This study aims to assess the effect at the transcriptomic level of application of three elicitors (Vitalfit, Fruitel, and Protone) in Tempranillo. The experiment was conducted on a commercial vineyard in Olite/Erriberri (Navarra). Results showed that the use of elicitors caused a differential gene expression level with respect to control plants shortly after their application. It was observed that this effect could be transient. In terms of the biosynthesis of phenolic compounds, all three elicitors demonstrated an inhibition of tannin-synthesizing genes while promoting anthocyanin synthesis. Changes in sugar accumulation were also observed. All three elicitors caused a slowing of the expression level of genes related to monosaccharide synthesis. In addition, changes in the expression of genes with structural functions were also observed. Conversely, some adverse effects on genes related to aroma and stress response, among others, were found. To sum up, the application of elicitors might be beneficial for the advance of anthocyanin synthesis and sugar accumulation delay, but they also may cause counterproductive effects in these and other metabolic pathways.
Acknowledgements: This work was funded by Navarra Government (project ADAPT-VIT).
DOI:
Issue: ICGWS 2023
Type: Poster
Authors
1 Dept. of Agronomy, Biotechnology and Food Science, Public University of Navarre, Campus Arrosadia, 31006 Pamplona-Iruña, Navarra, Spain.
2 Institute for Multidisciplinary Research in Applied Biology (IMAB-UPNA), Public University of Navarre, Campus Arrosadia 31006 Pamplona-Iruña, Spain.