terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Comparison of ancestral and traditional methods in the elaboration of sparkling wines; preliminary results

Comparison of ancestral and traditional methods in the elaboration of sparkling wines; preliminary results

Abstract

Top quality sparkling wines (SW) are mostly produced using the traditional method that implies a second fermentation into the bottle[1]. That is the case of sparkling wines of reputed AOC such as Champagne, Cava or Franciacorta. However, it seems that the first SW was elaborated using the ancestral method in which only one fermentation takes place[2]. That is the case of the classical SW from the AOC Blanquette de Limoux[3]. In both cases, SW age in the bottle during some time in contact with lees favoring yeast’s autolysis[4]. There is a lot of information about traditional method but only few exists about ancestral method. The aim of this work was to compare SW made by the ancestral method with SW made by the traditional method.

A grape must of Macabeo was fermented and when density was around 1005, it was separated in two sets. One was maintained in the tank until the end of fermentation whereas the other was cooled, filtered to reduce the yeast’s population and bottled for elaborating SW by ancestral method. The other set was used once alcoholic fermentation was finished for elaborating SW by traditional method.

As expected, the ethanol content of ancestral SW was around 1.5 % lower than that of traditional SW since it was not supplemented with sugar for the 2nd fermentation. No differences were found in titratable acidity, volatile acidity, pH or in protein content. However, the polysaccharide concentration was higher in the case of traditional SW which suggest a higher impact of yeast’s autolysis. In contrast, the foamability (HM) was higher in the case of ancestral SW, probably because its lower ethanol content. The wines were tasted by a trained panel which considers both wines positively.

References:

1)  Maujean A. (1989) Histoire de bulles. Rev Franç Enol. 120:11-17.

2)  J. Robinson (ed) (2006) The Oxford Companion to Wine. Third Edition pp. 402–403 Oxford University Press. ISBN 0-19-860990-6

3)  Dubois C. et al. (1998). Blanquette methode ancestrale. In: Oenologie: Principes scientifiques et technologiques. C. Flanzy (Ed.). Tec & Doc Lavoisier. p. 833.

4)  Pons-Mercadé P. et al. (2021). Monitoring yeast autolysis in sparkling wines of nine consecutive vintages produced by the traditional method. Aust J Grape Wine Res. DOI 10.1111/ajgw.12534

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Arnau Just-Borràs1, Ekaterina Moroz1, Pol Giménez1, Pedro Cabanillas1, Jordi Gombau1, Joan M. Canals1, Fernando Zamora1*

1Departament de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo s/n, 43007 Tarragona, Spain

Contact the author*

Keywords

sparkling wine, traditional method, ancestral method, foam properties

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effects of heat and water stress on grapevine health: primary and secondary metabolism

Grapevine resilience to climate change has become one of the most pressing topics in the Viticulture & Enology field. Vineyard health demands understanding the mechanisms that explain the direct and indirect interactions between environmental stressors. The current climate change scenario, where drought and heat-wave are more frequent and intense, strongly demands improving our knowledge of environmental stresses. During a heatwave, the ambient temperature rises above the plant’s average tolerance threshold and, generally, above 35 oC plant’s adaptation to heat stress is activated.

Under-vine management effects on grapevine vegetative growth, gas exchange and rhizosphere microbial diversity

The use of cover crops under the vines might be an alternative to the use of herbicides or tillage, improving grapevine quality and soil characteristics. The aim of this research was to study the implications of different management strategies of the soil under the vines (herbicide, cultivation or cover crops) on grapevine growth, water and nutritional status, gas exchange parameters and belowground microbial communities.
The experimental design consisted in 4 treatments applied on 35L-potted Tempranillo vegetative grapevines with 10 replicates each grown in an open-top greenhouse in 2022 and 2023. Treatments included two cover crop species (Trifolium fragiferum and Bromus repens), herbicide (glyphosate al 36%) and an untreated control.

Investigating the Ancient Egyptian wines: The wine jars database

In Ancient Egypt, wine was a luxury product consumed mainly by the upper classes and the royal family and offered to gods in daily religious rituals in the temples.
Since the Predynastic (4000-3100 BC) period, wine jars were placed in tombs as funerary offerings. From the Old Kingdom (2680-2160 BC) to the Greco-Roman (332 BC-395 AD) period, viticulture and winemaking scenes were depicted on the private tombs’ walls. During the New Kingdom (1539-1075 BC), wine jars were inscribed to indicate: vintage year, product, quality, provenance, property and winemaker’s name and title.

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time.

Early defoliation positively enhances bioactive composition of berries with no effect on cuticle characteristics

Leaf removal in the fruit-zone has been employed to improve cluster light exposure and ventilation and therefore increase metabolite accumulation and reduce botrytis incidence in berries. When applied before flowering (early defoliation – ED), it can also decrease cluster compactness and regulate yield in high-yielding varieties. This study aimed to evaluate the impact of ED on the physiology and metabolism of Aragonez (syn. Tempranillo) berries along the ripening period. The experiment was set up in 2013 at a commercial vineyard located in the Lisbon winegrowing region.