terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Comparison of ancestral and traditional methods in the elaboration of sparkling wines; preliminary results

Comparison of ancestral and traditional methods in the elaboration of sparkling wines; preliminary results

Abstract

Top quality sparkling wines (SW) are mostly produced using the traditional method that implies a second fermentation into the bottle[1]. That is the case of sparkling wines of reputed AOC such as Champagne, Cava or Franciacorta. However, it seems that the first SW was elaborated using the ancestral method in which only one fermentation takes place[2]. That is the case of the classical SW from the AOC Blanquette de Limoux[3]. In both cases, SW age in the bottle during some time in contact with lees favoring yeast’s autolysis[4]. There is a lot of information about traditional method but only few exists about ancestral method. The aim of this work was to compare SW made by the ancestral method with SW made by the traditional method.

A grape must of Macabeo was fermented and when density was around 1005, it was separated in two sets. One was maintained in the tank until the end of fermentation whereas the other was cooled, filtered to reduce the yeast’s population and bottled for elaborating SW by ancestral method. The other set was used once alcoholic fermentation was finished for elaborating SW by traditional method.

As expected, the ethanol content of ancestral SW was around 1.5 % lower than that of traditional SW since it was not supplemented with sugar for the 2nd fermentation. No differences were found in titratable acidity, volatile acidity, pH or in protein content. However, the polysaccharide concentration was higher in the case of traditional SW which suggest a higher impact of yeast’s autolysis. In contrast, the foamability (HM) was higher in the case of ancestral SW, probably because its lower ethanol content. The wines were tasted by a trained panel which considers both wines positively.

References:

1)  Maujean A. (1989) Histoire de bulles. Rev Franç Enol. 120:11-17.

2)  J. Robinson (ed) (2006) The Oxford Companion to Wine. Third Edition pp. 402–403 Oxford University Press. ISBN 0-19-860990-6

3)  Dubois C. et al. (1998). Blanquette methode ancestrale. In: Oenologie: Principes scientifiques et technologiques. C. Flanzy (Ed.). Tec & Doc Lavoisier. p. 833.

4)  Pons-Mercadé P. et al. (2021). Monitoring yeast autolysis in sparkling wines of nine consecutive vintages produced by the traditional method. Aust J Grape Wine Res. DOI 10.1111/ajgw.12534

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Arnau Just-Borràs1, Ekaterina Moroz1, Pol Giménez1, Pedro Cabanillas1, Jordi Gombau1, Joan M. Canals1, Fernando Zamora1*

1Departament de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo s/n, 43007 Tarragona, Spain

Contact the author*

Keywords

sparkling wine, traditional method, ancestral method, foam properties

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The effect of ozonated water treatment on the metabolic profile and resistance of vines to Downy and powdery mildew 

Ozone is a potent oxidizing compound that quickly decomposes into oxygen without residues. Previous works reported that ozone is not only a disinfectant that directly harms the pathogens of the vine but also activates systemic defense systems in the plant by activating oxidative stress. We assume these systemic defense mechanisms are essential to the vines’ resistance to downy and powdery mildew (Plasmopara viticola & Erysiphe necator, respectively). The goals of the research are to examine the effect of spraying with ozone water on the plant’s resistance against the mentioned pathogens as well as to characterize the metabolic profile of the plants treated with ozone as well as physiological characteristics in the vines such as the level of Photosynthesis and crop yield. Vines in the vineyard sprayed with ozone water at concentrations of 2 and 4 PPM weekly and biweekly, untreated control & conventional spray. Leaves were taken from vines 2,4,7,9 and 11 days after exposure to ozone and inoculated with the pathogens.

Selecting green cover species in the under-trellis zone of Lower Austrian vineyards

The under-trellis zone of vineyards is a sensitive area through which vines cover a significant portion of their nutrient and water needs. Mechanical and chemical methods are applied to suppress competing and tall-growing weeds to ensure optimal vine growth conditions. In addition to higher operating costs and depending on the soil conditions, these practices might lead to a long-term reduction in soil fertility and biodiversity. The presented study aims to analyse the suitability and interspecies competition of a selected green cover mixture of five local herbaceous species as potential green cover mixture in the under-trellis area of Lower Austrian vineyards.

Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

The root and shoot abscisic acid (ABA) accumulation in response to water deficit and its relation with stomatal conductance is longtime known in grapevine. ABA-dependent and ABA-independent signalling response to osmotic stress coexist in sessile plants. In grapevine, the signaling role of ABA in response to water stress conditions and its influence on berry quality is critical to manage grapevine acclimation to climate change.

Distribution and sensory impact of new oak wood-derived compounds in wines

Despite the numerous research studies carried out in recent years, the study of wine aroma remains of great interest due to its complexity. Wine maturation in oak barrels is described as an important step in the production of quality wines. In fact, oak wood develops several aromatic nuances through its toasting which can be released into the wine. A great deal of work has been performed in order to identify the wood-derived volatile compounds that contribute to wine aroma (e.g., whisky-lactone, maltol, eugenol, guaiacol, vanillin).

Phenolic composition and chromatic characteristics of blends of cv. Tempranillo wines from vines grown with different viticultural techniques in a semi-arid area

The quality and color stability of red wines are directly related to content and distribution of phenolic compounds. However, the climate change produces the asynchrony between the dates of technological and maturity of grapes. The crop-forcing technique (CF) restores the coupling between phenolic and technological ripeness while limits vineyard yields. Blending of wines is frequently used to equilibriate composition of wines and to increase their stability, color and quality. The aim of the present work is to study the phenolic composition and color of wine blends made with FW (wines from vines subjected to CF) and CW (wines for vines under the usual cultivation practices).