terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Comparison of ancestral and traditional methods in the elaboration of sparkling wines; preliminary results

Comparison of ancestral and traditional methods in the elaboration of sparkling wines; preliminary results

Abstract

Top quality sparkling wines (SW) are mostly produced using the traditional method that implies a second fermentation into the bottle[1]. That is the case of sparkling wines of reputed AOC such as Champagne, Cava or Franciacorta. However, it seems that the first SW was elaborated using the ancestral method in which only one fermentation takes place[2]. That is the case of the classical SW from the AOC Blanquette de Limoux[3]. In both cases, SW age in the bottle during some time in contact with lees favoring yeast’s autolysis[4]. There is a lot of information about traditional method but only few exists about ancestral method. The aim of this work was to compare SW made by the ancestral method with SW made by the traditional method.

A grape must of Macabeo was fermented and when density was around 1005, it was separated in two sets. One was maintained in the tank until the end of fermentation whereas the other was cooled, filtered to reduce the yeast’s population and bottled for elaborating SW by ancestral method. The other set was used once alcoholic fermentation was finished for elaborating SW by traditional method.

As expected, the ethanol content of ancestral SW was around 1.5 % lower than that of traditional SW since it was not supplemented with sugar for the 2nd fermentation. No differences were found in titratable acidity, volatile acidity, pH or in protein content. However, the polysaccharide concentration was higher in the case of traditional SW which suggest a higher impact of yeast’s autolysis. In contrast, the foamability (HM) was higher in the case of ancestral SW, probably because its lower ethanol content. The wines were tasted by a trained panel which considers both wines positively.

References:

1)  Maujean A. (1989) Histoire de bulles. Rev Franç Enol. 120:11-17.

2)  J. Robinson (ed) (2006) The Oxford Companion to Wine. Third Edition pp. 402–403 Oxford University Press. ISBN 0-19-860990-6

3)  Dubois C. et al. (1998). Blanquette methode ancestrale. In: Oenologie: Principes scientifiques et technologiques. C. Flanzy (Ed.). Tec & Doc Lavoisier. p. 833.

4)  Pons-Mercadé P. et al. (2021). Monitoring yeast autolysis in sparkling wines of nine consecutive vintages produced by the traditional method. Aust J Grape Wine Res. DOI 10.1111/ajgw.12534

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Arnau Just-Borràs1, Ekaterina Moroz1, Pol Giménez1, Pedro Cabanillas1, Jordi Gombau1, Joan M. Canals1, Fernando Zamora1*

1Departament de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo s/n, 43007 Tarragona, Spain

Contact the author*

Keywords

sparkling wine, traditional method, ancestral method, foam properties

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.

Sensory profile of wines obtained from disease-resistant varieties in La Rioja

The European wine industry is facing multiple challenges derived from climate change and the pressure of different fungal diseases that are compromising the production of traditional varieties. A sustainable alternative maybe the adoption of resistant varieties.
In this study, we have evaluated the enological potential of 9 resistant varieties (5 white and 4 red varieties) in La Rioja. Microvinifications were carried out with three biological replications. Oenological parameters were very diverse with acid content varying from 2.6 g/L to 6.6 g/L.

White grape must processed by UHPH as an alternative to SO2 addition: Effect on the phenolic composition in three varieties

The quantity and distribution of polyphenols in musts play a fundamental role in the white winemaking. This is because these substances are exposed to oxidation reactions, which are catalysed by the polyphenol oxidase (PPO), leading to a decrease in the quality of the wines produced. PPO is inactivated by SO2, but currently, due to the restrictions of the legislation, other methodologies are being investigated. Ultra-High Pressure Homogenization (UHPH) is a non-thermal physic technology that exerts an ultrahigh pressure pumping (>200 MPa) of a fluid through a valve in a continuous system.

Perception, liking and emotional response of tropical fruit aromas in Chardonnay wines

Tropical fruit aromas in wines are thought to be important to wine consumers, although there is little research to confirm this statement. With so many wine styles available, it has become important to understand the qualities that are desirable to consumers and how to achieve those qualities. Thiols and esters are compounds that have been found to cause tropical fruit aromas in chardonnay (ref). Fermentation temperature gradients and skin contact were found to increase these compounds using micro scale fermentations. This work aimed to scale up these fermentations/operations to determine if the desired tropical fruit aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

Drought responses of grapevine cultivars under different environments

Using grapevine genetic diversity is one of the strategies to adapt viticulture to climate change. In this sense, assessing the plasticity of cultivars in their responses to environmental conditions is essential. For this purpose, the drought tolerance of Grenache, Tempranillo and Semillon cultivars grafted onto SO4 was evaluated at two experimental vineyards, one located in Valencia (Spain) and the other in Bordeaux (France). This was done by assessing gas exchange parameters, water relations and leaf hydraulic traits at the end of the season.