terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Comparison of ancestral and traditional methods in the elaboration of sparkling wines; preliminary results

Comparison of ancestral and traditional methods in the elaboration of sparkling wines; preliminary results

Abstract

Top quality sparkling wines (SW) are mostly produced using the traditional method that implies a second fermentation into the bottle[1]. That is the case of sparkling wines of reputed AOC such as Champagne, Cava or Franciacorta. However, it seems that the first SW was elaborated using the ancestral method in which only one fermentation takes place[2]. That is the case of the classical SW from the AOC Blanquette de Limoux[3]. In both cases, SW age in the bottle during some time in contact with lees favoring yeast’s autolysis[4]. There is a lot of information about traditional method but only few exists about ancestral method. The aim of this work was to compare SW made by the ancestral method with SW made by the traditional method.

A grape must of Macabeo was fermented and when density was around 1005, it was separated in two sets. One was maintained in the tank until the end of fermentation whereas the other was cooled, filtered to reduce the yeast’s population and bottled for elaborating SW by ancestral method. The other set was used once alcoholic fermentation was finished for elaborating SW by traditional method.

As expected, the ethanol content of ancestral SW was around 1.5 % lower than that of traditional SW since it was not supplemented with sugar for the 2nd fermentation. No differences were found in titratable acidity, volatile acidity, pH or in protein content. However, the polysaccharide concentration was higher in the case of traditional SW which suggest a higher impact of yeast’s autolysis. In contrast, the foamability (HM) was higher in the case of ancestral SW, probably because its lower ethanol content. The wines were tasted by a trained panel which considers both wines positively.

References:

1)  Maujean A. (1989) Histoire de bulles. Rev Franç Enol. 120:11-17.

2)  J. Robinson (ed) (2006) The Oxford Companion to Wine. Third Edition pp. 402–403 Oxford University Press. ISBN 0-19-860990-6

3)  Dubois C. et al. (1998). Blanquette methode ancestrale. In: Oenologie: Principes scientifiques et technologiques. C. Flanzy (Ed.). Tec & Doc Lavoisier. p. 833.

4)  Pons-Mercadé P. et al. (2021). Monitoring yeast autolysis in sparkling wines of nine consecutive vintages produced by the traditional method. Aust J Grape Wine Res. DOI 10.1111/ajgw.12534

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Arnau Just-Borràs1, Ekaterina Moroz1, Pol Giménez1, Pedro Cabanillas1, Jordi Gombau1, Joan M. Canals1, Fernando Zamora1*

1Departament de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo s/n, 43007 Tarragona, Spain

Contact the author*

Keywords

sparkling wine, traditional method, ancestral method, foam properties

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.

Valorization of grapevine leaves: screening of polyphenol composition in 50 cultivars

Grapevine leaves are known to contain different polyphenols such as flavonols, catechins and stilbenes, which are known to act as main contributors for plant defense against pathogens (1). While the composition for some major cultivars has been studied, there is lack of systematic comparison about the content of these compounds in the wide ecodiversity of Vitis vinifera cv. Recent advances in Mass Spectrometry-based Metabolomics allow a wider and more sensitive description of these polyphenols, as instance of those present in leaves (2). Such information could help to better explain leaf traits regarding the development of the leaf or to the plant tolerance to a pathogen. Moreover, these compounds offer appealing applications for human health due to their antioxidant activities.

Wine without added SO2: Oxygen impact and color evolution during red wine aging

SO2 play a major role in wine stability and evolution during its aging and storage. Winemaking without SO2 is a big challenge for the winemakers since the lack of SO2 affects directly the wine chemical evolution such as the aromas compounds as well as the phenolic compounds. During the red wine aging, phenolic compounds such as anthocyanin, responsible of the red wine colour, and tannins, responsible of the mouthfeel organoleptic properties of wine, evolved quickly from the winemaking process to aging [1]. A lot of new interaction and molecules occurred lead by oxygen[2] thus the lack of SO2 will induce wine properties changes. Nowadays, the phenolic composition of the wine without added SO2 have not been clearly reported.

is the overall ecological awarness among Spanish winemakers related to their attitudes towards natural wines?

The Agenda 2030 of the EU sets out the main guidelines for transitioning towards a resilient, green and safe economy. To this regard, the wine sector is experiencing an ecological transition in different ways such as increasing the production of ecological crops, or promoting the production of wines under more environmental-friendly and healthier (i.e., lower levels of SO2) products. These alternatives to conventional production are a smaller proportion of wines, in constant growth and demand, and follow alternative and minority practices, which range from sustainable to deeply philosophical thoughts. Among these methods there are organic, biodynamic and, more recently, natural wines.

Ecophysiological characterisation of terroir effects on Vitis vinifera L. Chardonnay and pinot noir in south african cool climate regions

Terroir encompasses environmental (climate, geology, soil and topography), genetic (cultivar and clone) and human factors (oenological and viticultural practices). Climate change brings about shifts in the suitability of a region for the growth of specific grapevine cultivars. This study focused on climatic and fruit parameters (berry size, weight, pH, total acidity (TA) and phenolics) to characterise the terroir effect in Vitis vinifera L. cultivars Chardonnay and Pinot Noir vineyards in the Cape South Coast region (Walker Bay and Elgin).