terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Comparison of ancestral and traditional methods in the elaboration of sparkling wines; preliminary results

Comparison of ancestral and traditional methods in the elaboration of sparkling wines; preliminary results

Abstract

Top quality sparkling wines (SW) are mostly produced using the traditional method that implies a second fermentation into the bottle[1]. That is the case of sparkling wines of reputed AOC such as Champagne, Cava or Franciacorta. However, it seems that the first SW was elaborated using the ancestral method in which only one fermentation takes place[2]. That is the case of the classical SW from the AOC Blanquette de Limoux[3]. In both cases, SW age in the bottle during some time in contact with lees favoring yeast’s autolysis[4]. There is a lot of information about traditional method but only few exists about ancestral method. The aim of this work was to compare SW made by the ancestral method with SW made by the traditional method.

A grape must of Macabeo was fermented and when density was around 1005, it was separated in two sets. One was maintained in the tank until the end of fermentation whereas the other was cooled, filtered to reduce the yeast’s population and bottled for elaborating SW by ancestral method. The other set was used once alcoholic fermentation was finished for elaborating SW by traditional method.

As expected, the ethanol content of ancestral SW was around 1.5 % lower than that of traditional SW since it was not supplemented with sugar for the 2nd fermentation. No differences were found in titratable acidity, volatile acidity, pH or in protein content. However, the polysaccharide concentration was higher in the case of traditional SW which suggest a higher impact of yeast’s autolysis. In contrast, the foamability (HM) was higher in the case of ancestral SW, probably because its lower ethanol content. The wines were tasted by a trained panel which considers both wines positively.

References:

1)  Maujean A. (1989) Histoire de bulles. Rev Franç Enol. 120:11-17.

2)  J. Robinson (ed) (2006) The Oxford Companion to Wine. Third Edition pp. 402–403 Oxford University Press. ISBN 0-19-860990-6

3)  Dubois C. et al. (1998). Blanquette methode ancestrale. In: Oenologie: Principes scientifiques et technologiques. C. Flanzy (Ed.). Tec & Doc Lavoisier. p. 833.

4)  Pons-Mercadé P. et al. (2021). Monitoring yeast autolysis in sparkling wines of nine consecutive vintages produced by the traditional method. Aust J Grape Wine Res. DOI 10.1111/ajgw.12534

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Arnau Just-Borràs1, Ekaterina Moroz1, Pol Giménez1, Pedro Cabanillas1, Jordi Gombau1, Joan M. Canals1, Fernando Zamora1*

1Departament de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo s/n, 43007 Tarragona, Spain

Contact the author*

Keywords

sparkling wine, traditional method, ancestral method, foam properties

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Nitrogen (N) is quite important nutrient in grapevine development and must quality, but under Mediterranean climatic conditions, available soil water (ASW) during grapevine development can also influence vigour and must quality. The aim was to determine the influence of soil nitrate (NO3-) availability on N foliar, yield, and must quality in vineyards with similar available water holding capacity (AWC). For this purpose, four cv. Tempranillo (Vitis vinifera L.) vineyards were selected. All of them are placed in Uruñuela municipality (La Rioja, Spain), separated less than 2.5 km and in a slope <1 %, in soils with similar soil chemistry properties and with similar rooting depth (ranging between 105 cm and 110 cm).

Preliminary results of water status and metabolite content of three new crossbreed winegrape genotypes

This study presents the preliminary results obtained in 2022, of the evaluation of three new crossbreed winegrape genotypes and their parental varieties, grown under controlled irrigation (60% ETc) and rainfed conditions in a wine-growing area with scarcity of water and high temperatures (Murcia, southeast Spain). The genotypes MC16 and MC80 were obtained from crosses between the varieties ‘Monastrell’ and ‘Cabernet Sauvignon’, and MS104 from crosses between ‘Monastrell’ and ‘Syrah’ [1]. The objective of this study was to analyse the physiological response and vegetative development of the 6 genotypes under the two irrigation conditions, and to study their effect on the content of soluble sugars and chlorophyll in the leaf.

Investigating the Ancient Egyptian wines: The wine jars database

In Ancient Egypt, wine was a luxury product consumed mainly by the upper classes and the royal family and offered to gods in daily religious rituals in the temples.
Since the Predynastic (4000-3100 BC) period, wine jars were placed in tombs as funerary offerings. From the Old Kingdom (2680-2160 BC) to the Greco-Roman (332 BC-395 AD) period, viticulture and winemaking scenes were depicted on the private tombs’ walls. During the New Kingdom (1539-1075 BC), wine jars were inscribed to indicate: vintage year, product, quality, provenance, property and winemaker’s name and title.

A sensometabolomic approach to understand wine mouthfeel percepts

Targeted analytical methods can overlook compounds that are a priori unknown to play a role in the mouthfeel sensations. This limitation can be overcome with the information provided by untargeted metabolomic analysis using UPLC‐QTOF-MS. To this end, an untargeted metabolomic approach applied to 42 red wines has allowed development of a model with predictive capacity by cross-validation for the “dry”, “oily” and “unctuous” sensations perceived by a sensory panel. The optimal PLS model for “dry” retained compounds with positive regression coefficients (≥ 0.17) including a trimer procyanidin, a peptide, and four anthocyanins.

Entomopathogenic nematodes application for controlling Lobesia botrana in grapevine and their impact on grapevine quality 

Entomopathogenic nematodes (EPN) are well-known biological control agents combined with specific adjuvants that now allow their use against aerial pests. Lobesia botrana (Lepidoptera: Tortricidae) is one of the major harmful pests detected in worldwide vineyards. Previous studies demonstrated that the EPNs Steinernema feltiae and S. carpocapsae could control L. botrana. The hypothesis was that the best combination of EPN-adjuvant/timing (season/temperatures) will support the use of EPN in the vineyard against L. botrana with no impact on the grape performance.