terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Oxidability of wines made from Spanish minority grape varieties

Oxidability of wines made from Spanish minority grape varieties

Abstract

The phenolic profile of a wine plays an essential role in its oxidative capacity and in both white and red wines it defines its shelf life[1]. The study of minority varieties to produce wines with peculiar characteristics necessarily includes the phenolic and oxidative characterization of the wines produced. This paper presents the study of wines made from 24 minority and majority white and red grape varieties, focusing on phenolic characteristics (total phenols, slightly polymerized phenols, highly polymerized phenols, anthocyanins…), color, as well as parameters related to the oxidability of the wines and their capacity to consume oxygen [2]. The white wines studied were made with the following varieties: Albarín, Albillo, Doña Blanca, Godello, Legiruela, Malvasía, Puesta en Cruz, Rufete Blanco, Sauvignon Blanc, Verdejo and Viognier and the red wines with Bruñal, Cabernet Sauvignon, Cenicienta, Estaladiña, Juan García, Mandón, Mencía, Merenzao, Merlot, Negro Saurí, Prieto Picudo, Tempranillo, Tinta de Toro. The preliminary results obtained are very interesting and indicate that regardless of the winery, the wines of each variety have their own characteristics, showing a lower capacity to consume oxygen in white wines made with Puesta en Cruz, Rufete Blanco, Viognier or Albillo, which is reflected in their lower browning compared to wines made with Albarín, Verdejo or Sauvignon Blanc, which have a higher browning rate. In the case of red wines, those made with Mandón, Cenicienta or Juan García show a greater capacity to consume oxygen than those made with Negro Saurí, Merenzao or Estaladiña.

Acknowledgements: ITACyL for their financial support to Actividades de Investigación, Promoción de la Innovación y la Transferencia del Conocimiento en Sectores Estratégicos de Castilla y León: SECTOR VITIVINÍCOLA

References:

  1. Oliveira, C. M., et al. (2011) Oxidation mechanisms occurring in wines. Food Res. Int 44(5), 1115–1126 DOI 10.1016/j.foodres.2011.03.050
  2. Del Alamo-Sanza, M et al (2021) Air saturation methodology proposal for the analysis of wine oxygen consumption kinetics. Food Res. Int, DOI 10.1016/j.foodres.2021.110535

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

María del Alamo-Sanza*, Aitana de Torre, María Asensio-Cuadrado, Marioli Carrasco-Quiroz, Rubén del Barrio-Galán, Ana Martínez-Gil, Luis Miguel Cárcel-Cárcel, Teresa Garde-Cerdán, Ignacio Nevares

1Grupo UVaMOX-Universidad de Valladolid. Ava. Madrid 50 34001 Palencia

Contact the author*

Keywords

oxidation, wine, phenols, browning, oxygen consumption capacity

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Survey of pesticide residues in vineyard soils from the Denomination of Origin Ribeiro

Vineyards from mild temperature, high humidity locations receive often treatments with fungicides to prevent damages produced by fungi responsible for mildium, oidium and botrytis infections. In addition, insecticides are also applied to vineyards to fight again pests, which affect directly, or indirectly (as vectors of different diseases), their productivity. A fraction of the above compounds reaches the soil of vineyards, either during application, or when released from the canopy of vines due to rain-wash-off. Thereafter, depending on soil conditions (pH, organic matter) and environmental variables (regimen of rain, slope of vineyards), they might persist in this compartment, be degraded and/or transferred to water masses, modifying the biodiversity of soils and/or affecting the quality of water reservoirs.

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.

Options to replace or reduce the sulphite content in Tannat red wines produced with minimal intervention

Several Uruguayan wineries have begun to produce wines with minimal intervention, to increase the sustainability of their vineyards and wines. These wines are characterized by the minimum intervention in the management of the vineyard, its harvest, vinification, conservation and aging1,2. Sulfur dioxide (SO2) is not used or is used in reduced doses, although chitosan can be substituted or supplemented1. The objective of this research is to evaluate SO2 reduction or replacement options adapted to the production of Tannat red wines with minimal intervention. Vinification of the Tannat grapes with autochthonous yeasts (LN) was carried out during the 2023 vintage.

Chemical profiling and sensory analysis of wines from resistant hybrid grape cultivars vs conventional wines

Recently, there has been a shift toward sustainable wine production, according to EU policy (F2F and Green Deal), to reduce pesticide usage, improve workplace health and safety, and prevent the impacts of climate change. These trends have gained the interest of consumers and winemakers. The cultivation of disease resistant hybrid grape cultivars (DRHGC), known as ‘PIWI’ grapes can help with these objectives [1]. This study aimed to profile white and red wines produced from DRHGC in South Tyrol (Italy). Wines produced from DRHGCs were compared with conventional wines produced by the same wineries. The measured parameters were residual sugars, organic acids, alcohol content, pigments and other phenolics by LC-QqQ/MS, colorimetric indexes (CIELab); and volatile profiles (HS-SPME-GCxGC-ToF/MS [2]).

Selecting green cover species in the under-trellis zone of Lower Austrian vineyards

The under-trellis zone of vineyards is a sensitive area through which vines cover a significant portion of their nutrient and water needs. Mechanical and chemical methods are applied to suppress competing and tall-growing weeds to ensure optimal vine growth conditions. In addition to higher operating costs and depending on the soil conditions, these practices might lead to a long-term reduction in soil fertility and biodiversity. The presented study aims to analyse the suitability and interspecies competition of a selected green cover mixture of five local herbaceous species as potential green cover mixture in the under-trellis area of Lower Austrian vineyards.