GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Effects of early leaf removal on grape quality of Albariño vines subjected to different water regimes

Effects of early leaf removal on grape quality of Albariño vines subjected to different water regimes

Abstract

Context and purpose of the study – The grape quality is affected by the canopy manipulation. Water management is a fundamental tool for controlling reproductive growth and grape quality. Moreover, the overall effect of irrigation might produce changes according to other cultural practices, particularly those associated with leaf removal. The present study aimed to determine the effect of early defoliation on the volatile composition of cv Albariño under different water regimes. 

Material and methods – This work was conducted in 2016 and 2017 growing seasons in an experimental vineyard of Vitis vinifera cv. Albariño located in Galicia (Spain), Denomination of Origin Rías Baixas. 
The early defoliation treatment was applied by leaf removing of the first six basal leaves at before flowering (DF) and compared with an undefoliated control treatment (C). DF and C were applied to vines on different water regime treatments, rainfed (R0) and drip irrigated at 30 % of the reference evapotranspiration (R2). The grapes from each experimental treatment replication were analyzed by chemical (OIV methods) and volatile composition (GC-MS). 

Results – Glucose and fructose (G+F) reached the highest values in R0. Early defoliation (DF) applied in both water regimes (R0 and R2) increased sugars concentration and decreased the malic and tartaric acids. The GC-MS analysis of Albariño musts allowed identifying and quantifying thirty-six volatile compounds belonging to seven families, including higher alcohols C6 compounds, terpenes, C13-norisoprenoids, volatile esters, acetates, volatile acids, volatile phenols and lactones. 
Must volatile composition was affected by the treatments. Early defoliation (DF) induced an increase of total volatile concentration of cv Albariño must independently of water regime. Alcohols and terpenes+C13-norisoprenids were the most affected volatiles, increasing their concentration when early defoliation was applied in both water regimes. However, ethyl esters and C6-compounds concentration only increased when DF was applied in R0.

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

Mar Vilanova1, María Fandiño2, José Manuel Mirás-Avalos2, José Javier Cancela2

(1) Spanish National Research Council (MBG-CSIC). El Palacio-Salcedo, 36143, Pontevedra, Spain
(2) GI-1716, Agroforestry Engineering Department, EPSE, Universidad de Santiago de Compostela, 27002 Lugo, Spain

Contact the author

Keywords

Vitis vinifera, defoliation, irrigation, grape chemical composition, volatile composition. 

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

From average to individual fruit, a paradigm shift for accurate analysis of water accumulation and primary metabolism in developing berries

Presentknowledge about grape development is mainly driven by the premise that a typical berry would follow the same kinetics as the population average

Monitoring of ripening and yield of vineyards in Nemea region using UAV

Nemea region is the largest POD zone in Greece. Agiorgitiko (Vitis vinifera L. cv.) is the most cultivated variety in Greece with significant wine potential.

Flooding responses on grapevine: a physiological, transcriptional and metabolic perspective

Studies on model plants have shown that temporary soil flooding exposes roots to a significant hypoxic stress resulting in metabolic re-programming, accumulation of toxic metabolites and hormonal imbalance. To date, physiological and transcriptional responses to flooding in grapevine are poorly characterized. To fill this gap, we aimed to gain insights into the transcriptional and metabolic changes induced by flooding on grapevine roots (K5BB rootstocks), on which cv Sauvignon blanc (Vitis vinifera L.) plants were grafted.

Diversity in grape composition for sugars and acidity opens options to mitigate the effect of warming during ripening

The marked climate change impact on vine and grape development (phenology, sugar content, acidity …) is one of the manifestations of Genotype X Environment X Management interactions importance in viticulture. Some practices, such as irrigation, can mitigate the effect of water deficit on grape development, but warming is much more difficult to challenge. High temperatures tend to alter the acid balance of the fruit with a parallel increase in sugar concentration. In the long term, genetic improvement to select varieties better coping with temperature elevation appear as a good option to support sustainable viticulture. Nevertheless, the existing phenotypic diversity for grape quality components that are influenced by temperature is poorly understood, which jeopardizes breeding strategies.

Soil proximal sensing provides direction in delineating plant water status of ‘crimson seedless’ (Vitis vinifera L.) vineyards

Crimson Seedless’ (Vitis vinifera L.) is a late-ripening, red seedless table grape cultivar with inadequate anthocyanin accumulation and less than ideal berry size issues