GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Effects of early leaf removal on grape quality of Albariño vines subjected to different water regimes

Effects of early leaf removal on grape quality of Albariño vines subjected to different water regimes

Abstract

Context and purpose of the study – The grape quality is affected by the canopy manipulation. Water management is a fundamental tool for controlling reproductive growth and grape quality. Moreover, the overall effect of irrigation might produce changes according to other cultural practices, particularly those associated with leaf removal. The present study aimed to determine the effect of early defoliation on the volatile composition of cv Albariño under different water regimes. 

Material and methods – This work was conducted in 2016 and 2017 growing seasons in an experimental vineyard of Vitis vinifera cv. Albariño located in Galicia (Spain), Denomination of Origin Rías Baixas. 
The early defoliation treatment was applied by leaf removing of the first six basal leaves at before flowering (DF) and compared with an undefoliated control treatment (C). DF and C were applied to vines on different water regime treatments, rainfed (R0) and drip irrigated at 30 % of the reference evapotranspiration (R2). The grapes from each experimental treatment replication were analyzed by chemical (OIV methods) and volatile composition (GC-MS). 

Results – Glucose and fructose (G+F) reached the highest values in R0. Early defoliation (DF) applied in both water regimes (R0 and R2) increased sugars concentration and decreased the malic and tartaric acids. The GC-MS analysis of Albariño musts allowed identifying and quantifying thirty-six volatile compounds belonging to seven families, including higher alcohols C6 compounds, terpenes, C13-norisoprenoids, volatile esters, acetates, volatile acids, volatile phenols and lactones. 
Must volatile composition was affected by the treatments. Early defoliation (DF) induced an increase of total volatile concentration of cv Albariño must independently of water regime. Alcohols and terpenes+C13-norisoprenids were the most affected volatiles, increasing their concentration when early defoliation was applied in both water regimes. However, ethyl esters and C6-compounds concentration only increased when DF was applied in R0.

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

Mar Vilanova1, María Fandiño2, José Manuel Mirás-Avalos2, José Javier Cancela2

(1) Spanish National Research Council (MBG-CSIC). El Palacio-Salcedo, 36143, Pontevedra, Spain
(2) GI-1716, Agroforestry Engineering Department, EPSE, Universidad de Santiago de Compostela, 27002 Lugo, Spain

Contact the author

Keywords

Vitis vinifera, defoliation, irrigation, grape chemical composition, volatile composition. 

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Protection of grapevines from red blotch by understanding mechanistic basis of its infection

Currently, grapevine is host to a large number of pathogenic agents, including 65 viruses, five viroids and eight phytoplasmas. Needless to say, these pathogens, especially viruses responsible for several ‘infectious degeneration’ or ‘decline’ cause great distress to wine makers and grape growers, let alone the large economic losses incurred by the wine industry. A recent addition to this wide repertoire of grapevine viruses is a new viral disease known as Red Blotch in viticulture parlance. Its causal organism, Grapevine red blotch associated virus (GRBaV), discovered in 2008 is a newly identified virus of grapevines and a putative member of a new genus within the family Geminiviridae.

Ampelograpic and genetic characterisation of grapevine genetic resources from Ozalj-Vivodina region (Croatia)

Ozalj- vivodina region is small vine growing area (only about 100 hectares of vineyards), but with significant number of old, ancient vineyards planted between 50 and 100 years ago. Trend of abandoning or replanting ancient vineyards takes place for the last 30 years. This trend results in grapevine germplasm erosion because traditional varieties are replaced with well known international varieties.Few known traditional varieties are dominantly present in ancient vineyards together with many others of unknown identity. Historical data about prevalence and characteristic of varieties on this area are very poor.

Seasonal vine nutrient dynamics and distribution of shiraz grapevines

The nutrient reserves in the grapevine perennial structure perform a critical role in supplying the grapevine with nutrients

The grapesim model: a model to better understand the complex interactions between carbon and nitrogen cycles in grapevines

Nitrogen fertilization is an important practice to guarantee vineyards sustainability and performance over years, while ensuring berry quality. However, achieving a precise nitrogen fertilization to meet specific objectives of production is difficult. There is a lack of knowledge on the impact of nitrogen fertilizers (soil/foliar; organic/mineral) and different levels of fertilization on the interactions between carbon and nitrogen cycles within the vine. Crop models may be useful in that purpose because they can provide new insights of the effects of fertilization in carbon and nitrogen storage. The objective of this study is to build a model to simulate grapevine carbon and nitrogen content in vines to evaluate the impact of different fertilization strategies in vine growth and yield.

Riesling aroma composition in light of changing global temperatures – delving into the effects of warmer nights on the volatile profile of riesling grapes

Climate is a key parameter when the modulation of berry and subsequent wine composition is considered. Recent decades have already seen an increase in global surface temperatures