GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Effects of early leaf removal on grape quality of Albariño vines subjected to different water regimes

Effects of early leaf removal on grape quality of Albariño vines subjected to different water regimes

Abstract

Context and purpose of the study – The grape quality is affected by the canopy manipulation. Water management is a fundamental tool for controlling reproductive growth and grape quality. Moreover, the overall effect of irrigation might produce changes according to other cultural practices, particularly those associated with leaf removal. The present study aimed to determine the effect of early defoliation on the volatile composition of cv Albariño under different water regimes. 

Material and methods – This work was conducted in 2016 and 2017 growing seasons in an experimental vineyard of Vitis vinifera cv. Albariño located in Galicia (Spain), Denomination of Origin Rías Baixas. 
The early defoliation treatment was applied by leaf removing of the first six basal leaves at before flowering (DF) and compared with an undefoliated control treatment (C). DF and C were applied to vines on different water regime treatments, rainfed (R0) and drip irrigated at 30 % of the reference evapotranspiration (R2). The grapes from each experimental treatment replication were analyzed by chemical (OIV methods) and volatile composition (GC-MS). 

Results – Glucose and fructose (G+F) reached the highest values in R0. Early defoliation (DF) applied in both water regimes (R0 and R2) increased sugars concentration and decreased the malic and tartaric acids. The GC-MS analysis of Albariño musts allowed identifying and quantifying thirty-six volatile compounds belonging to seven families, including higher alcohols C6 compounds, terpenes, C13-norisoprenoids, volatile esters, acetates, volatile acids, volatile phenols and lactones. 
Must volatile composition was affected by the treatments. Early defoliation (DF) induced an increase of total volatile concentration of cv Albariño must independently of water regime. Alcohols and terpenes+C13-norisoprenids were the most affected volatiles, increasing their concentration when early defoliation was applied in both water regimes. However, ethyl esters and C6-compounds concentration only increased when DF was applied in R0.

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

Mar Vilanova1, María Fandiño2, José Manuel Mirás-Avalos2, José Javier Cancela2

(1) Spanish National Research Council (MBG-CSIC). El Palacio-Salcedo, 36143, Pontevedra, Spain
(2) GI-1716, Agroforestry Engineering Department, EPSE, Universidad de Santiago de Compostela, 27002 Lugo, Spain

Contact the author

Keywords

Vitis vinifera, defoliation, irrigation, grape chemical composition, volatile composition. 

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

A comprehensive ecological study of grapevine sensitivity to temperature; how terroir will shift under climate change

Fossil fuel combustion continues to drive increases in atmospheric carbon dioxide, consequently elevating the global annual mean temperature and specifically increasing the growing season temperatures in many of the world’s most important wine growing regions (IPCC 2014; Jones et al 2005). Grapes are sensitive to changes in growing season temperatures, and past models have shown a direct link between warming temperatures and earlier harvest dates (Cook and Wolkovich 2016). Globally, there have been shifts of 1-2 weeks for wine growing regions (Wolkovich et al 2017 and references within). The phenological shifts resulting from growing season temperature increases are documented internationally, and models predicting phenology using temperature are becoming more precise (Parker et al 2011).

Grapevine bud fertility under elevated carbon dioxide

Aims: Microscopic bud dissection is a common tool used to assess grapevine bud fertility and therefore to predict the yield of the following season

Effect of irrigation regime on carbon isotope ratio (δ13c) in different grapevines

In Castilla-La Mancha as other winegrowing regions, vineyards suffer the effects of the global climate warming. Severe spring and summer droughts are increasingly frequent, which concur with the phenological stages most susceptible to water and temperature stress. Under these conditions, irrigation use is required in order to ensure the vineyard growing sustainability. However water resources are increasingly limited, for this reason is required to choose cultivars displaying high water use efficiency.

Grape ripening and wine style: synchronized evolution of aromatic composition of shiraz wines from hot and temperate climates of Australia

Grape ripening is a process driven by the interactions between grapevine genotypes and environmental factors. Grape composition is largely responsible for the production

Sustaining grape production under challenging climate change circumstances

Grapevines are an important economic crop grown in temperate climates of both hemispheres characterized by short‐term heat spells and heat waves