GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Evaluation of the effect of regulated deficit irrigation on Vitis vinifera Cabernet-Sauvignon physiological traits and final fruit composition

Evaluation of the effect of regulated deficit irrigation on Vitis vinifera Cabernet-Sauvignon physiological traits and final fruit composition

Abstract

Context and purpose of the study – Climate change establishes challenges, as well as opportunities for many sectors, and markedly the wine sector. The wine industry plays a weighty role in Chile’s economy, where contributes considerably to the country financial development. Counting the vulnerability of the country to such changes, it is fundamental to enact preventive measures aiming at besting the resources management, above all water necessities for cultivated crops. Optimal irrigation in grapevines could be accomplished by means of physiological data based programming and final grape and wine chemical and sensory performance. This study aims to understand the impacts of different levels of deficit irrigation on a large amount of chemical markers from aroma to non-volatile compounds, and the final impact on sensory profile.   

Material and methods – A regulated deficit irrigation (RDI) experimental trial that was conducted in a commercial vineyard of Cabernet Sauvignon in the Maule valley in central Chile. Four regulated deficit irrigation (RDI regimes were employed in four replicated blocks to replenish different portions of evapotranspiration (ET) from pea-size stadium until harvest. These managements were conceived 100 % ET, 70 % ET, 50-100 % ET (50 % ET before veraison and 100 % ET afterward) and 25-100 % ET (25 % ET before veraison and 100 % ET afterward). The following parameters were measured: midday stem water potential (Ψstem), stomatal conductance (gs), vine and grapes growth, yield, quality of must. GSMS for norisoprenoid, terpene, C6s compounds and methoxypyrazines concentration and HPLC for anthocyanin and low molecular weight phenols was used. 

Results – Of definite interest were the outcomes from the grapes’ evolution monitoring, as we had expectations of an alteration in their development in RDI conditions. Apart from the mere berry size, which showed significant differences between the treatments and control, no other variations have been registered. Surprisingly, the °Brix degrees were very alike, indicating that a reduced water availability does not always imply a faster maturation of the sugars in the grapes, as opposed to previous investigations that shows that a conventional irrigation may imply a delay in sugar accumulation. These circumstances additionally, allowed us to harvest all of the four regimes at the same time, thus providing optimal comparison bases. Significant differences were found in several traits, from lower concentration of malic acid in RDI treatments to higher concentrations of anthocyanin and some specificflavonoids like quercetin and miricetins. In the case of aroma compounds, our partial results indicate a significant effect of the RDI in increasing the concentration of 3-Isobutyl-2-methoxypyrazine. This result might be linked to increased light interception in the RDI treatments, who tend to defoliate early in the season

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

Sebastian Vargas1, Francesco Guidi1,2, Edmundo Bordeu3, Alvaro Gonzalez1, Samuel Ortega-Farías4

(1) Centro de Investigación e Innovación de Viña Concha y Toro, Ruta K-650 km 10 Pencahue, Chile
(2) École Supérieure d’Agriculture d’Angers, 55 rue Rabelais 49007 Angers, France
(3) Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile
(4) Centro de Investigación y Transferencia en Riego y Agroclimatología (CITRA), Universidad de Talca, Av. Lircay s/n, Talca, Chile

Contact the author

Keywords

regulated deficit irrigation, Cabernet Sauvignon, stem water potential, stomatal conductance, yield components, IBMP, Low molecular weight phenols.

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

To what extent does vine balance actually drive fruit composition?

Context and purpose of the study ‐ Vine balance is a concept describing the relationship between carbon assimilation (usually estimated using a measure of vine vigour, e.g. pruning weight) and its utilisation for fruit production (usually estimated using harvest yield). Manipulating vine balance through leaf area or crop load adjustments affects the proportion of the vine’s total carbohydrate production required to mature the fruit. It is commonly considered that composition of the berry, and resulting wine, is strongly affected by vine balance.

Impact of moderate water deficit on grape quality potential on Pinot Noir in Champagne (France)

Environmental factors like soil and climate influence grape quality potential. Their impact is often mediated through vine water and nitrogen status. Depending on the color of the grapes (red or white) and the type of wine produced, the desired level of vine water and nitrogen status for optimum wine quality is different. Little investigation has been carried out concerning these factors and their potential influence on sparkling wine quality on two vintages. In this study vine water and nitrogen status were assessed at a very high density and related to grape composition and berry weight. Through statistical analyses, the major factors driving grape quality potential on Pinot noir in Champagne were highlighted.

Crop load management of newly planted Pinot gris grown in warm climate of California

San Joaquin Valley accounts for 68% of Pinot gris acreage and produces 83% of Pinot gris wine in California. Strong demand for Pinot gris has prompted growers to restrict the nonbearing period

Digitising the vineyard: developing new technologies for viticulture in Australia 

New and developing technologies, that provide sensors and the software systems for using and interpreting them, are becoming pervasive through our lives and society. From smart phones to cars to farm machinery, all contain a range of sensors that are monitored automatically with intelligent software, providing us with the information we need, when we need it. This technological revolution has the potential to monitor all aspects of vineyard activity, assisting growers to make the management choices they need to achieve the outcomes they want. For example, a future vineyard may possess automated imaging that generates a three dimensional model of the vine canopy, highlighting differences from the desired structure and how to use canopy management to improve fruit composition, or generates maps with yield estimates and measurements of berry composition throughout the growing season.

Utilization of remote sensing technology to detect riesling vineyard variability

ineyard blocks can vary spatially with respect to several viticulturally significant qualities such as soil variables, vine vigor, vine physiology