GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Evaluation of the effect of regulated deficit irrigation on Vitis vinifera Cabernet-Sauvignon physiological traits and final fruit composition

Evaluation of the effect of regulated deficit irrigation on Vitis vinifera Cabernet-Sauvignon physiological traits and final fruit composition

Abstract

Context and purpose of the study – Climate change establishes challenges, as well as opportunities for many sectors, and markedly the wine sector. The wine industry plays a weighty role in Chile’s economy, where contributes considerably to the country financial development. Counting the vulnerability of the country to such changes, it is fundamental to enact preventive measures aiming at besting the resources management, above all water necessities for cultivated crops. Optimal irrigation in grapevines could be accomplished by means of physiological data based programming and final grape and wine chemical and sensory performance. This study aims to understand the impacts of different levels of deficit irrigation on a large amount of chemical markers from aroma to non-volatile compounds, and the final impact on sensory profile.   

Material and methods – A regulated deficit irrigation (RDI) experimental trial that was conducted in a commercial vineyard of Cabernet Sauvignon in the Maule valley in central Chile. Four regulated deficit irrigation (RDI regimes were employed in four replicated blocks to replenish different portions of evapotranspiration (ET) from pea-size stadium until harvest. These managements were conceived 100 % ET, 70 % ET, 50-100 % ET (50 % ET before veraison and 100 % ET afterward) and 25-100 % ET (25 % ET before veraison and 100 % ET afterward). The following parameters were measured: midday stem water potential (Ψstem), stomatal conductance (gs), vine and grapes growth, yield, quality of must. GSMS for norisoprenoid, terpene, C6s compounds and methoxypyrazines concentration and HPLC for anthocyanin and low molecular weight phenols was used. 

Results – Of definite interest were the outcomes from the grapes’ evolution monitoring, as we had expectations of an alteration in their development in RDI conditions. Apart from the mere berry size, which showed significant differences between the treatments and control, no other variations have been registered. Surprisingly, the °Brix degrees were very alike, indicating that a reduced water availability does not always imply a faster maturation of the sugars in the grapes, as opposed to previous investigations that shows that a conventional irrigation may imply a delay in sugar accumulation. These circumstances additionally, allowed us to harvest all of the four regimes at the same time, thus providing optimal comparison bases. Significant differences were found in several traits, from lower concentration of malic acid in RDI treatments to higher concentrations of anthocyanin and some specificflavonoids like quercetin and miricetins. In the case of aroma compounds, our partial results indicate a significant effect of the RDI in increasing the concentration of 3-Isobutyl-2-methoxypyrazine. This result might be linked to increased light interception in the RDI treatments, who tend to defoliate early in the season

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

Sebastian Vargas1, Francesco Guidi1,2, Edmundo Bordeu3, Alvaro Gonzalez1, Samuel Ortega-Farías4

(1) Centro de Investigación e Innovación de Viña Concha y Toro, Ruta K-650 km 10 Pencahue, Chile
(2) École Supérieure d’Agriculture d’Angers, 55 rue Rabelais 49007 Angers, France
(3) Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile
(4) Centro de Investigación y Transferencia en Riego y Agroclimatología (CITRA), Universidad de Talca, Av. Lircay s/n, Talca, Chile

Contact the author

Keywords

regulated deficit irrigation, Cabernet Sauvignon, stem water potential, stomatal conductance, yield components, IBMP, Low molecular weight phenols.

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

«Aztec» – the new white table grape resistant variety

This paper presents is the create, the study and amplographic
description the new white Greek table variety grapes “Aztec”, created in 2013 by breeder P. Zamanidis at
the Athens vineyard of the Institute of Olive, Subtropical Plants and Vine.

Improving stilbenes in vitis Labrusca L. Grapes through methyl jasmonate applications

Grapes (Vitis sp.) are considered a major source of phenolic compounds such as flavonols, anthocyanins and stilbenes. Studies related to the beneficial effects of these compounds on health have encouraged research aimed at increasing their concentration in fruits. On this behalf, several plant growth regulators such as jasmonic acid and its volatile ester, methyl-jasmonate (MeJa), have demonstrated promising results in many fruits. However, Brazilian subtropical climate might interfere on treatment response. The present study aims to evaluate the application of MeJa in the pre-harvest period in Concord and Isabel Precoce grapes (Vitis labrusca L.).

The current state and prospects for the development of viticulture and winemaking in Greece

Viticulture in Greece is the oldest, but in recent years there has been a reduction of areas intended for the production of wine products. The article contains data on viticulture in Greece. Over time, the land of Greek vineyards is fluctuating. There is a trend towards a decrease in areas in connection with the quota of products from the EU.

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Berry weight loss in Vitis vinifera (L.) cultivars during ripening

Berry shriveling (BS) in vineyards are caused by numerous factors such as sunburn, dehydration, stem necrosis. Climate change results in an increase in day and night temperatures, rainfall throughout the year, changes in the timing and quantities, long dry summers and a combination of climatic variability such as floods, droughts and heatwaves). Grape development and its composition at harvest is influenced by the latter as grape metabolites are sensitive to the environmental conditions. The grape berry experiences water loss and an increase in flavour development as a result of the BS. An increased sugar content in grapes will result in higher alcohol wines and concentration of grape aromas which may be detrimental to the final wine quality.