GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Evaluation of the effect of regulated deficit irrigation on Vitis vinifera Cabernet-Sauvignon physiological traits and final fruit composition

Evaluation of the effect of regulated deficit irrigation on Vitis vinifera Cabernet-Sauvignon physiological traits and final fruit composition

Abstract

Context and purpose of the study – Climate change establishes challenges, as well as opportunities for many sectors, and markedly the wine sector. The wine industry plays a weighty role in Chile’s economy, where contributes considerably to the country financial development. Counting the vulnerability of the country to such changes, it is fundamental to enact preventive measures aiming at besting the resources management, above all water necessities for cultivated crops. Optimal irrigation in grapevines could be accomplished by means of physiological data based programming and final grape and wine chemical and sensory performance. This study aims to understand the impacts of different levels of deficit irrigation on a large amount of chemical markers from aroma to non-volatile compounds, and the final impact on sensory profile.   

Material and methods – A regulated deficit irrigation (RDI) experimental trial that was conducted in a commercial vineyard of Cabernet Sauvignon in the Maule valley in central Chile. Four regulated deficit irrigation (RDI regimes were employed in four replicated blocks to replenish different portions of evapotranspiration (ET) from pea-size stadium until harvest. These managements were conceived 100 % ET, 70 % ET, 50-100 % ET (50 % ET before veraison and 100 % ET afterward) and 25-100 % ET (25 % ET before veraison and 100 % ET afterward). The following parameters were measured: midday stem water potential (Ψstem), stomatal conductance (gs), vine and grapes growth, yield, quality of must. GSMS for norisoprenoid, terpene, C6s compounds and methoxypyrazines concentration and HPLC for anthocyanin and low molecular weight phenols was used. 

Results – Of definite interest were the outcomes from the grapes’ evolution monitoring, as we had expectations of an alteration in their development in RDI conditions. Apart from the mere berry size, which showed significant differences between the treatments and control, no other variations have been registered. Surprisingly, the °Brix degrees were very alike, indicating that a reduced water availability does not always imply a faster maturation of the sugars in the grapes, as opposed to previous investigations that shows that a conventional irrigation may imply a delay in sugar accumulation. These circumstances additionally, allowed us to harvest all of the four regimes at the same time, thus providing optimal comparison bases. Significant differences were found in several traits, from lower concentration of malic acid in RDI treatments to higher concentrations of anthocyanin and some specificflavonoids like quercetin and miricetins. In the case of aroma compounds, our partial results indicate a significant effect of the RDI in increasing the concentration of 3-Isobutyl-2-methoxypyrazine. This result might be linked to increased light interception in the RDI treatments, who tend to defoliate early in the season

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

Sebastian Vargas1, Francesco Guidi1,2, Edmundo Bordeu3, Alvaro Gonzalez1, Samuel Ortega-Farías4

(1) Centro de Investigación e Innovación de Viña Concha y Toro, Ruta K-650 km 10 Pencahue, Chile
(2) École Supérieure d’Agriculture d’Angers, 55 rue Rabelais 49007 Angers, France
(3) Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile
(4) Centro de Investigación y Transferencia en Riego y Agroclimatología (CITRA), Universidad de Talca, Av. Lircay s/n, Talca, Chile

Contact the author

Keywords

regulated deficit irrigation, Cabernet Sauvignon, stem water potential, stomatal conductance, yield components, IBMP, Low molecular weight phenols.

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Consistency of the hydraulic traits and stomatal responses in grapevines with contrasting hydraulic vulnerability

Different from wild species in arid and semiarid conditions, cultivated species are very sensitive to drought and, beyond some stress thresholds, food production is not possible

Assessing bunch architecture for grapevine yield forecasting by image analysis

It is fundamental for wineries to know the potential yield of their vineyards as soon as possible for future planning of winery logistics. As such, non-invasive image-based methods are being investigated for early yield prediction. Many of these techniques have limitations that make it difficult to implement for practical use commercially. The aim of this study was to assess whether yield can be estimated using images taken in-field with a smartphone at different phenological stages. The accuracy of the method for predicting bunch weight at different phenological stages was assessed for seven different varieties.

Impact of crop load management on terpene content in gewürztraminer grapes

Context and purpose of the study ‐ Crop load management by cluster thinning can improve ripening and the concentration of key metabolites for grape and wine quality. However, little work has been done on testing the impact of crop load management on terpene content of white grapes. The goal of the study was to assess if by reducing crop load via cluster thinning growers can increase terpene concentration of grapes, as well as to test if the timing of thinning application affects terpene concentration.

Effect of irrigation regime on carbon isotope ratio (δ13c) in different grapevines

In Castilla-La Mancha as other winegrowing regions, vineyards suffer the effects of the global climate warming. Severe spring and summer droughts are increasingly frequent, which concur with the phenological stages most susceptible to water and temperature stress. Under these conditions, irrigation use is required in order to ensure the vineyard growing sustainability. However water resources are increasingly limited, for this reason is required to choose cultivars displaying high water use efficiency.

Protection of grapevines from red blotch by understanding mechanistic basis of its infection

Currently, grapevine is host to a large number of pathogenic agents, including 65 viruses, five viroids and eight phytoplasmas. Needless to say, these pathogens, especially viruses responsible for several ‘infectious degeneration’ or ‘decline’ cause great distress to wine makers and grape growers, let alone the large economic losses incurred by the wine industry. A recent addition to this wide repertoire of grapevine viruses is a new viral disease known as Red Blotch in viticulture parlance. Its causal organism, Grapevine red blotch associated virus (GRBaV), discovered in 2008 is a newly identified virus of grapevines and a putative member of a new genus within the family Geminiviridae.