terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Applicability of spectrofluorometry and voltammetry in combination with machine learning approaches for authentication of DOCa Rioja Tempranillo wines

Applicability of spectrofluorometry and voltammetry in combination with machine learning approaches for authentication of DOCa Rioja Tempranillo wines

Abstract

The main objective of the work was to develop a simple, robust and selective analytical tool that allows predicting the authenticity of Tempranillo wines from DOCa Rioja. The techniques of voltammetry and absorbance-transmission and fluorescence excitation emission matrix (A-TEEM) spectroscopy have been applied in combination with machine learning (ML) algorithms to classify red wines from DOCa Rioja according to  region (Alavesa, Alta or Oriental) and category (young, crianza or reserva).

Linear sweep voltammetry (using disposable carbon paste electrodes) and A-TEEM signals of 132 Tempranillo red wines were acquired. Data were analysed following non-supervised statistical strategies such as principal component analysis (PCA) to reduce the number of variables, and two-way ANOVA (origin and category) and supervised modeling strategies derived from machine learning algorithms.

The voltammogram in the region of 691-771 mV provided clear classification of the three ageing categories and Rioja Oriental and Rioja Alavesa/Alta could be separated, but Alavesa could not be differentiated from Alta based on voltammetric signals. Results showed that A-TEEM was more efficient in classifying subareas and ageing categories of Tempranillo Rioja wines, with an ML approach using extreme gradient boosting discriminant analysis (XGBDA) providing 100% correct class assignment for subregion and wine category. A-TEEM coupled with ML algorithms is presented as a powerful and rapid approach to classify Tempranillo Rioja wines according to their origin and style of ageing.

Acknowledgements: This project was funded by the Corporation DOCa Rioja and the José Castillejo program through the Ministerio de Universidades: Programa Estatal de Promoción del Talento y su Empleabilidad en I+D+i, Subprograma Estatal de Movilidad, del Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020 (CAS21/00221).

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

M. P. Sáenz-Navajas1*, S. Bastian2, D. W. Jeffery2

1Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja-Consejo Superior de Investigaciones Científicas-Gobierno de La Rioja). Departamento de Enología, Logroño, La Rioja, Spain
2School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia

Contact the author*

Keywords

designated origin, A-TEEM, extreme gradient boosting, classification, red wine, statistical modeling

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

“Compost Application in the Vineyard: Effects on Soil Nutrition and Compaction”

The mechanization of pruning and harvesting in vineyards has increased the risk of soil compaction. To reclaim soil properties or avoid this degradation process, it is crucial to properly manage the soil organic matter, and the application of compost derived from the vines themselves is a strategy to achieve this. The objective of this study was to evaluate the properties of soil treated with different doses of compost applied both on the vine row and the inter rows of a Vitis vinifera crop.

Using climate services to project grapevine varietal adequation under climate change – application to cv. Tempranillo in the Douro wine region

Vine growth circumstances are becoming warmer and drier because of climate change. Higher temperatures advance ripening to a point in the season less conducive to the production of fine wine, while drought reduces yields (Van Leeuwen et al., 2019). Several wine-producing regions around the world have already recognized threats to their viticultural viability (Santos et al., 2020). An economical and cost-effective strategy for adaptation is the employment of late-ripening, drought-resistant plant material (varieties, clones, and rootstocks).

Role of anthocyanins and copigmentation in flavonol solubility in red wines 

Over the last years, due to climate change, several red wines, such as the Sangiovese wines, have been often subjected to loss of clarity due to the formation of deposits of fine needle-shaped crystals. This phenomenon turned out to be due to an excess of quercetin (Q) and its glycosides (Q-Gs) in wines. These compounds are synthesized to a large extent when grapes are excessively exposed to UVB radiations in vineyards[1]. Unfortunately, it is not easy to predict the degree of Q precipitation because its solubility strongly depends on the wine and matrix composition[2].

Cumulative effect of deficit irrigation and salinity on vine responses

Climate change is increasing water needs in most of the wine growing regions while reducing the availability and quality of water resources for irrigation. In this context, the sustainability of Mediterranean viticulture depends on grapevine responses to the combinations of water and salt stress. With this aim, this work studies the effects of deficit irrigation and salinity on the physiology of the Tempranillo cultivar (Vitis vinifera L.) grafted onto a drought and salinity tolerant rootstock (1103 Paulsen).

Wine without added SO2: Oxygen impact and color evolution during red wine aging

SO2 play a major role in wine stability and evolution during its aging and storage. Winemaking without SO2 is a big challenge for the winemakers since the lack of SO2 affects directly the wine chemical evolution such as the aromas compounds as well as the phenolic compounds. During the red wine aging, phenolic compounds such as anthocyanin, responsible of the red wine colour, and tannins, responsible of the mouthfeel organoleptic properties of wine, evolved quickly from the winemaking process to aging [1]. A lot of new interaction and molecules occurred lead by oxygen[2] thus the lack of SO2 will induce wine properties changes. Nowadays, the phenolic composition of the wine without added SO2 have not been clearly reported.