GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Effect of kaolin foliar application on grape cultivar Assyrtiko (Vitis vinifera L.) under vineyard conditions

Effect of kaolin foliar application on grape cultivar Assyrtiko (Vitis vinifera L.) under vineyard conditions

Abstract

Context and purpose of the study – In the context of climate change and for the sustainable exploitation of Mediterranean vineyards, it is necessary to use new strategies to adapt to the new climatic conditions. High temperatures and radiation along with the increasing CO2 concentration in the atmosphere affect the maturity process, the technological maturity, as well as the physiology of the grapevine. The aim of the present study was to investigate the effects of kaolin foliar application on water relations, photosynthesis and berry composition of grape cultivar Assyrtiko, under drought conditions in Santorini and with two different training systems. 

Material and methods – The experiment took place in the cultivation season 2017-2018 in Santorini. There were two vineyards, one with the traditional training system of Santorini ‘kouloures’, and one with a unilateral Guyot training system, on vines of grape cultivar Assyrtiko. In both vineyards, there were vines that underwent kaolin application and control vines.  

Results – The use of kaolin reduced the leaf temperature in both training systems by 6.2 % for the unilateral Guyot system and by 6.9% for the traditional system. Chlorophyll concentration was higher after kaolin application for both training systems. Regarding the water potential, the kaolin application reduced water stress in both training systems, with significant difference observed in the unilateral Guyot system. Vine transpiration did not present statistically significant difference after the kaolin application. The photosynthesis of the vines after kaolin application was lower in comparison with the control vines, while in the case of stomatal conductance, there were no statistically significant differences observed. Kaolin delayed the maturation of the grapes in the case of the traditional training system. Water use efficiency was lower in the treatments with kaolin application compared to control vines. Regarding the other mechanical properties of the grapes and analyses of the must, there were no significant differences observed between the treatments. Therefore, the application of kaolin can be an effective and economical solution for the water saving of the vines in dry conditions, while at the same time it can improve the physiology of the plant and preserve the qualitative and quantitative characters of the grapes

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

Eustratios Guillaume XYRAFIS1, Maritina STAVRAKAKI1, Ioannis DASKALAKIS1, Konstantinos TELLIS2, Despoina BOUZA1, Katerina BINIARI1*

(1) Laboratory of Viticulture, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
(2) Domaine Sigalas, Baxes, Oia Santorini 84702, Santorini, Greece

Contact the author

Keywords

Kaolin, Santorini, Vitis vinifera L., water stress, water use efficiency

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Impact of red blotch disease on Cabernet Sauvignon and Merlot grape and wine composition and wine sensory attributes

Grapevine Red Blotch disease (RB) is a recently discovered disease that has become a major concern for the viticulture and winemaking industry in California, USA. The causal agent, Grapevine Red Blotch Virus (GRBV) was identified in 2011 and its presence was confirmed in several states in the US, in Canada, and in Switzerland. It has been demonstrated that RB compromised the regulation of ripening by suppressing specific ripening events, altering the expression patterns of transcription factors and causing hormonal imbalances in Zinfandel.

Riesling aroma composition in light of changing global temperatures – delving into the effects of warmer nights on the volatile profile of riesling grapes

Climate is a key parameter when the modulation of berry and subsequent wine composition is considered. Recent decades have already seen an increase in global surface temperatures

Assessing macro-elements contents in vine leaves and grape berries of Vitis vinifera using near-infrared spectroscopy coupled with chemometrics

The cultivated vine (Vitis vinifera) is the main species cultivated in the world to make wine. In 2017, the world wine market represents 29 billion euros in exports, and France contributes 8.2 billion (28%) to this trade, making it a traditional market of strategic importance. Viticulture is therefore a key sector of the French agricultural economy. It is in this context that the nutritional diagnosis of the vine is of real strategic interest to winegrowers. Indeed, the fertilization of the vine is a tool for the winegrower that allows him to influence and regulate the quality of the wine.

Mapping of canopy features in commercial vineyards using machine vision

Vineyard canopy features such canopy porosity and fruit exposure influenced microclimate, fungal disease incidence and grape composition. An objective, rapid and non-invasive method to assess and map the canopy status is needed to apply in precision viticulture. A new method for canopy status assessment and mapping based on non-invasive machine vision was applied in commercial vineyards in this work.

Assessing reserve nitrogen at dormancy for predicting spring nitrogen status in Chardonnay grapevines

Nitrogen (N) supply strongly influences vine productivity and berry composition, matching availability and uptake requirements of vines during the growing season is essential to optimize vine nutrition. The nutritional status of grapevines is commonly assessed by the determination of petiole nutrient concentrations at flowering. The reserve N could also be an earlier indicator for grapevine N status, this work aimed to assess how the petiole levels relate to these perennial N reserves.