GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Effect of kaolin foliar application on grape cultivar Assyrtiko (Vitis vinifera L.) under vineyard conditions

Effect of kaolin foliar application on grape cultivar Assyrtiko (Vitis vinifera L.) under vineyard conditions

Abstract

Context and purpose of the study – In the context of climate change and for the sustainable exploitation of Mediterranean vineyards, it is necessary to use new strategies to adapt to the new climatic conditions. High temperatures and radiation along with the increasing CO2 concentration in the atmosphere affect the maturity process, the technological maturity, as well as the physiology of the grapevine. The aim of the present study was to investigate the effects of kaolin foliar application on water relations, photosynthesis and berry composition of grape cultivar Assyrtiko, under drought conditions in Santorini and with two different training systems. 

Material and methods – The experiment took place in the cultivation season 2017-2018 in Santorini. There were two vineyards, one with the traditional training system of Santorini ‘kouloures’, and one with a unilateral Guyot training system, on vines of grape cultivar Assyrtiko. In both vineyards, there were vines that underwent kaolin application and control vines.  

Results – The use of kaolin reduced the leaf temperature in both training systems by 6.2 % for the unilateral Guyot system and by 6.9% for the traditional system. Chlorophyll concentration was higher after kaolin application for both training systems. Regarding the water potential, the kaolin application reduced water stress in both training systems, with significant difference observed in the unilateral Guyot system. Vine transpiration did not present statistically significant difference after the kaolin application. The photosynthesis of the vines after kaolin application was lower in comparison with the control vines, while in the case of stomatal conductance, there were no statistically significant differences observed. Kaolin delayed the maturation of the grapes in the case of the traditional training system. Water use efficiency was lower in the treatments with kaolin application compared to control vines. Regarding the other mechanical properties of the grapes and analyses of the must, there were no significant differences observed between the treatments. Therefore, the application of kaolin can be an effective and economical solution for the water saving of the vines in dry conditions, while at the same time it can improve the physiology of the plant and preserve the qualitative and quantitative characters of the grapes

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

Eustratios Guillaume XYRAFIS1, Maritina STAVRAKAKI1, Ioannis DASKALAKIS1, Konstantinos TELLIS2, Despoina BOUZA1, Katerina BINIARI1*

(1) Laboratory of Viticulture, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
(2) Domaine Sigalas, Baxes, Oia Santorini 84702, Santorini, Greece

Contact the author

Keywords

Kaolin, Santorini, Vitis vinifera L., water stress, water use efficiency

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effects of the addition of biochar on the chemical parameters of a vineyard soil in South Tirol, Italy

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Temperature variability assessment at vineyard scale: control of data accuracy and data processing protocol

Climatic variability studies at fine scale have been developed in recent years with the reduction of material cost and the development of competitive miniaturized sensors. This work is forming part the LIFE-ADVICLIM project, of which one of the objectives is to model spatial temperature variability at vineyard scale. In the Bordeaux pilot site, a large network of data loggers has been set up to record temperature close to the vine canopy. The reduced distance between plant foliage and measurement equipment raises specific issues and leads to an increased rate of outliers compared to data retrieved from classical weather stations. Some of these were detected during data analysis, but others could not be easily identified. The present study aims to address the issue of data quality control and provide recommendations for data processing in climatic studies at fine scale.

Vegetative dose heights ‘Cabernet Sauvignon’ and its influence on fruit and wine quality

The leaf area is of fundamental importance so that the plant can realize adequate levels of photosynthesis for the accumulation of reserves and to reach a suitable maturation of
the berries. In this sense, the objective was to evaluate the effect of different lengths of the stalks from the first support wire, in the must and in the wine of ‘Cabernet Sauvignon’.

Sensitivity of vis‐nir spectral indices to detect nitrogen deficiency and canopy function in cv. Barbera (Vitis vinifera L.) Grapevines

Precision nutrient management in viticulture can be addressed on the basis of a spatial characterization of within‐vineyard vine

Post-plant nematicide timing for northern root-knot nematode in Washington wine grapes

Vigor declines in older vineyards and poor vine establishment in replant situations have been attributed to plant-parasitic nematodes. The northern root-knot nematode, Meloidogyne hapla, is the most prevalent plant-parasitic nematode species found in Washington wine grape vineyards. Management for nematodes in established vineyards is limited to the application of post-plant nematicides. We are evaluating new nematicides that are currently not registered in grape for their efficacy in controlling M. hapla and a part of that evaluation includes improving the alignment of nematicide application timing with the vulnerable second-stage juvenile (J2) life stage of M. hapla.