terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Abstract

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes. Two-year old grapevine plants were grown in 13 L pots, in a greenhouse under semi-controlled environmental conditions. Half of the plants of each variety were inoculated with a consortium of five AMF fungi at the vegetative stage. The concentrations of the main anthocyanins, flavonols and amino acids were analyzed in mature grapes using HPLC-DAD. Mycorrhizal inoculation barely influenced the concentration and profile of anthocyanins and flavonols in the varieties studied. However, AMF increased the concentration of total amino acids by 49%, in particular a-ketoglutarate, aspartate and shikimate derivatives, as well as the levels of aromatic precursor amino acids by 71%. Such effect of AMF was more evident in Cabernet Sauvignon than in Tempranillo. The results suggest that the inoculation of grapevine with AMF can improve the amino acid composition of grapes, which may have a potential impact on the wine-making process and the aromatic characteristics of wine.

Acknowledgements: A. Urdiain, M. Oyarzun & H. Santesteban for technical support, Asociación de Amigos UNAV (D. Kozikova’s scholarship), Bioera SL for AMF, MICINN (Gobierno España) (Ref. PID2020-118337RB-IOO) and ANDIA Talent Senior grant (Gobierno de Navarra).

References:

1) Trouvelot S. et al. (2015) Arbuscular mycorrhiza symbiosis in viticulture: a review. Agron. Sustain. Dev., 35: 1449-1467, DOI 10.1007/s13593-015-0329-7

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Daria Kozikova1*#, Johann Martínez-Lüscher#, Nieves Goicoechea, Inmaculada Pascual

1Instituto BIOMA-Universidad de Navarra, C/ Irunlarrea, 1. 31008, Pamplona (SPAIN)

#Both authors contributed equally

Contact the author*

Keywords

amino acids, anthocyanins, flavonols, grape, mycorrhizal symbiosis, Vitis vinifera L.

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Green pruning of shoots to force new sprouting of buds, in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

The context of climate crisis leads to the acceleration of technological ripening of grapes, with unsuitable loss of acidity, so various vineyard management alternatives are being considered to delay the grape ripening. The delay of the vegetative cycle towards a period of milder temperatures affects ripening, but vine behavior can vary according to the area, conduction, watering, variety, etc. A work is proposed to know the response to the green pruning of shoots, executed in fruit set and in pea size, in cv. Verdejo.

Quantification of polysaccharides of variety Pomaces of the D.O.Ca Rioja

Pomace is one of the main residues generated by the wine industry and represents an environmental problem. Currently, there is a growing interest in the revaluation of these products because different bioactive compounds can be obtained from them, such as polyphenols, grape seed oils and polysaccharides. Red grape pomace can be an important source of polysaccharides, but they are currently little studied and even less with viable and environmental extraction processes (green extraction), such as flash extraction. The residual amount of the fraction rich in pectin (residual pulp) and component rich in hemicellulose in the pomace and the strength of association of the pectin with the cellulose-xyloglucan network depend on the degree of extractability of the polysaccharides in red winemaking and on the winemaking conditions.

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time.

New varieties descendant from Monastrell with lower sugar and high phenolic content adapted to warm climates

Given that climate change is a continuous process, it is necessary to constantly search for new strategies that help the viticulturist sector to mitigate its consequences. All adaptation strategies will have a greater or lesser effect that in turn will be marked by the times of action. As a long-term action, a genetic breeding program to obtain new varieties descendant from Monastrell has been developed in the Region of Murcia (more specifically, in the IMIDA Research Center) since 1997. In this program, new red varieties have been developed through directed crosses of the Monastrell variety with other varieties such as Cabernet Sauvignon, Tempranillo and Syrah.

What to do to solve the riddle of vine rootstock induced drought tolerance

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.