terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Abstract

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes. Two-year old grapevine plants were grown in 13 L pots, in a greenhouse under semi-controlled environmental conditions. Half of the plants of each variety were inoculated with a consortium of five AMF fungi at the vegetative stage. The concentrations of the main anthocyanins, flavonols and amino acids were analyzed in mature grapes using HPLC-DAD. Mycorrhizal inoculation barely influenced the concentration and profile of anthocyanins and flavonols in the varieties studied. However, AMF increased the concentration of total amino acids by 49%, in particular a-ketoglutarate, aspartate and shikimate derivatives, as well as the levels of aromatic precursor amino acids by 71%. Such effect of AMF was more evident in Cabernet Sauvignon than in Tempranillo. The results suggest that the inoculation of grapevine with AMF can improve the amino acid composition of grapes, which may have a potential impact on the wine-making process and the aromatic characteristics of wine.

Acknowledgements: A. Urdiain, M. Oyarzun & H. Santesteban for technical support, Asociación de Amigos UNAV (D. Kozikova’s scholarship), Bioera SL for AMF, MICINN (Gobierno España) (Ref. PID2020-118337RB-IOO) and ANDIA Talent Senior grant (Gobierno de Navarra).

References:

1) Trouvelot S. et al. (2015) Arbuscular mycorrhiza symbiosis in viticulture: a review. Agron. Sustain. Dev., 35: 1449-1467, DOI 10.1007/s13593-015-0329-7

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Daria Kozikova1*#, Johann Martínez-Lüscher#, Nieves Goicoechea, Inmaculada Pascual

1Instituto BIOMA-Universidad de Navarra, C/ Irunlarrea, 1. 31008, Pamplona (SPAIN)

#Both authors contributed equally

Contact the author*

Keywords

amino acids, anthocyanins, flavonols, grape, mycorrhizal symbiosis, Vitis vinifera L.

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Wine without added SO2: Oxygen impact and color evolution during red wine aging

SO2 play a major role in wine stability and evolution during its aging and storage. Winemaking without SO2 is a big challenge for the winemakers since the lack of SO2 affects directly the wine chemical evolution such as the aromas compounds as well as the phenolic compounds. During the red wine aging, phenolic compounds such as anthocyanin, responsible of the red wine colour, and tannins, responsible of the mouthfeel organoleptic properties of wine, evolved quickly from the winemaking process to aging [1]. A lot of new interaction and molecules occurred lead by oxygen[2] thus the lack of SO2 will induce wine properties changes. Nowadays, the phenolic composition of the wine without added SO2 have not been clearly reported.

Effects of heat and water stress on grapevine health: primary and secondary metabolism

Grapevine resilience to climate change has become one of the most pressing topics in the Viticulture & Enology field. Vineyard health demands understanding the mechanisms that explain the direct and indirect interactions between environmental stressors. The current climate change scenario, where drought and heat-wave are more frequent and intense, strongly demands improving our knowledge of environmental stresses. During a heatwave, the ambient temperature rises above the plant’s average tolerance threshold and, generally, above 35 oC plant’s adaptation to heat stress is activated.

Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

The root and shoot abscisic acid (ABA) accumulation in response to water deficit and its relation with stomatal conductance is longtime known in grapevine. ABA-dependent and ABA-independent signalling response to osmotic stress coexist in sessile plants. In grapevine, the signaling role of ABA in response to water stress conditions and its influence on berry quality is critical to manage grapevine acclimation to climate change.

The use of δ13C as an indicator of water use efficiency for the selection of drought tolerant grapevine varieties

In the context of climate change with increasing evaporative demand, understanding the water use behavior of different grapevine cultivars is of critical importance. Carbon isotope discrimination (δ13C) measurements in wine provide a precise and integrated assessment of the water status of the vines during the sugar accumulation period in grape berries. When collected over multiple vintages on different cultivars, δ13C measurements can also provide insights into the effects of genotype on water use efficiency.

Evaluation of the effects of pruning methodology on the development of young vines 

Grapevine pruning is one of the most important practices in the vineyards. Winegrowers use it to provide the vines the shape needed, or to maintain it once achieved, and also to balance vegetative growth and fruit production. In the last decades, careless pruning has been blamed, among other factors, as responsible of the vineyard decay that is been observed even in young vines. However, to our knowledge, there is a lack of systematic research trying to elucidate to which extent the pruning method used affects plant development or its susceptibility to grapevine trunk diseases (GTD). Within this context, the aim of this work is to study the influence of different pruning method strategies on the development of field-planted young vines.