terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Abstract

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes. Two-year old grapevine plants were grown in 13 L pots, in a greenhouse under semi-controlled environmental conditions. Half of the plants of each variety were inoculated with a consortium of five AMF fungi at the vegetative stage. The concentrations of the main anthocyanins, flavonols and amino acids were analyzed in mature grapes using HPLC-DAD. Mycorrhizal inoculation barely influenced the concentration and profile of anthocyanins and flavonols in the varieties studied. However, AMF increased the concentration of total amino acids by 49%, in particular a-ketoglutarate, aspartate and shikimate derivatives, as well as the levels of aromatic precursor amino acids by 71%. Such effect of AMF was more evident in Cabernet Sauvignon than in Tempranillo. The results suggest that the inoculation of grapevine with AMF can improve the amino acid composition of grapes, which may have a potential impact on the wine-making process and the aromatic characteristics of wine.

Acknowledgements: A. Urdiain, M. Oyarzun & H. Santesteban for technical support, Asociación de Amigos UNAV (D. Kozikova’s scholarship), Bioera SL for AMF, MICINN (Gobierno España) (Ref. PID2020-118337RB-IOO) and ANDIA Talent Senior grant (Gobierno de Navarra).

References:

1) Trouvelot S. et al. (2015) Arbuscular mycorrhiza symbiosis in viticulture: a review. Agron. Sustain. Dev., 35: 1449-1467, DOI 10.1007/s13593-015-0329-7

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Daria Kozikova1*#, Johann Martínez-Lüscher#, Nieves Goicoechea, Inmaculada Pascual

1Instituto BIOMA-Universidad de Navarra, C/ Irunlarrea, 1. 31008, Pamplona (SPAIN)

#Both authors contributed equally

Contact the author*

Keywords

amino acids, anthocyanins, flavonols, grape, mycorrhizal symbiosis, Vitis vinifera L.

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Nitrogen (N) is quite important nutrient in grapevine development and must quality, but under Mediterranean climatic conditions, available soil water (ASW) during grapevine development can also influence vigour and must quality. The aim was to determine the influence of soil nitrate (NO3-) availability on N foliar, yield, and must quality in vineyards with similar available water holding capacity (AWC). For this purpose, four cv. Tempranillo (Vitis vinifera L.) vineyards were selected. All of them are placed in Uruñuela municipality (La Rioja, Spain), separated less than 2.5 km and in a slope <1 %, in soils with similar soil chemistry properties and with similar rooting depth (ranging between 105 cm and 110 cm).

Assessment of plant water consumption rates under climate change conditions through an automated modular platform

The impact of climate change is noticeable in the present weather, making water scarcity the most immediate mediator reducing the performance and viability of crops, including grapevine (Vitis vinifera L.). The present study developed a system (hardware, firmware, and software) for the determination of plant water use through changes in weight through a period. The aim is to measure the differences in grapevine water consumption in response to climate change (+4oC and 700 ppm) under controlled conditions. The results reveal a correlation between daily plant consumption rates and reference evapotranspiration (ETo).

Nitrogen forms and Iron deficiency: how do Grapevine rootstocks responses change?

Grapevine rootstocks provide protection against environmental biotic and abiotic stresses. Nitrogen (N) and iron (Fe) are growth-limiting factors in many crop plants due to their effects on the chlorophyll and photosynthetic characteristics. Iron nutrition of plants can be significantly affected by different nitrogen forms through altering the uptake ratio of cations and anions, and changing rhizosphere pH. The aim of this study was to investigate the response mechanisms of grapevine rootstocks due to the interaction between different nitrogen forms and iron uptake.

Study of Spanish wine sensory analysis data over a 3-year period

This study presents an investigation based on sensory analysis data of Spanish wines with geographical indications collected over a three-year period. Sensory analysis plays a crucial role in assessing the quality, characteristics, and perception of wines. The trained tasting panel at Dolmar Laboratory, accredited for objective sensory evaluation of wines since 2016, has been tasting over 5000 wines. However, it is since 2021, when a computer application for tastings was developed, that the digitalization of data allows for detailed statistical analysis of the results.

Symbiotic microorganisms application in vineyards: impacts on grapevine performance and microbiome

Microorganism-based inoculants have been suggested as a viable solution to mitigate the adverse effects of climate change on viticulture. However, the actual effectiveness of these inoculants when applied under field conditions remains a challenge, and their effects on the existing soil microbiota are still uncertain. This study investigates the impact of arbuscular mycorrhizal fungi inoculation on grapevine performance and microbiome. The study was conducted in a vineyard of Callet cultivar in Binissalem, Mallorca, Spain. Two different treatments were applied: control and inoculation with commercial mycorrhizae complex of Rhizoglomus irregulare applied to plants through irrigation.