terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Abstract

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes. Two-year old grapevine plants were grown in 13 L pots, in a greenhouse under semi-controlled environmental conditions. Half of the plants of each variety were inoculated with a consortium of five AMF fungi at the vegetative stage. The concentrations of the main anthocyanins, flavonols and amino acids were analyzed in mature grapes using HPLC-DAD. Mycorrhizal inoculation barely influenced the concentration and profile of anthocyanins and flavonols in the varieties studied. However, AMF increased the concentration of total amino acids by 49%, in particular a-ketoglutarate, aspartate and shikimate derivatives, as well as the levels of aromatic precursor amino acids by 71%. Such effect of AMF was more evident in Cabernet Sauvignon than in Tempranillo. The results suggest that the inoculation of grapevine with AMF can improve the amino acid composition of grapes, which may have a potential impact on the wine-making process and the aromatic characteristics of wine.

Acknowledgements: A. Urdiain, M. Oyarzun & H. Santesteban for technical support, Asociación de Amigos UNAV (D. Kozikova’s scholarship), Bioera SL for AMF, MICINN (Gobierno España) (Ref. PID2020-118337RB-IOO) and ANDIA Talent Senior grant (Gobierno de Navarra).

References:

1) Trouvelot S. et al. (2015) Arbuscular mycorrhiza symbiosis in viticulture: a review. Agron. Sustain. Dev., 35: 1449-1467, DOI 10.1007/s13593-015-0329-7

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Daria Kozikova1*#, Johann Martínez-Lüscher#, Nieves Goicoechea, Inmaculada Pascual

1Instituto BIOMA-Universidad de Navarra, C/ Irunlarrea, 1. 31008, Pamplona (SPAIN)

#Both authors contributed equally

Contact the author*

Keywords

amino acids, anthocyanins, flavonols, grape, mycorrhizal symbiosis, Vitis vinifera L.

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Climate change and viticulture in Nordic Countries and the Helsinki area

The first vineyards in Northern Europe were in Denmark in the 15th century, in the southern parts of Sweden and Finland in the 18th century at 55–60 degrees latitude. The grapes grown there have not been made into wine, but the grapes have been eaten at festive tables. The resurgence of viticulture has started with global warming, and currently the total area of viticulture in the Nordic countries, including Norway, is estimated to be 400–500 hectares, most of which is in Denmark. Southern Finland, like all southern parts of Northern Europe, belongs to the cool-cold winegrowing area.

Impact of polyclonal selection for abiotic stress tolerance on the yield and must quality traits of grapevine varieties

The effects of climate change in viticulture are currently a major concern, with heat waves and drought affecting yield, wine quality, and in extreme cases, even plant survival. Ancient grapevine varieties have high intravarietal genetic variability that so far has been explored successfully to improve yield and must quality. Currently, there is little information available on intravarietal variability regarding responses to stress. In the current work, the intravarietal genetic variability of several Portuguese varieties was studied for yield, must quality, and tolerance to abiotic stress, through indirect, rapid, and nondestructive measurements carried out in the field.

Oxidability of wines made from Spanish minority grape varieties

The phenolic profile of a wine plays an essential role in its oxidative capacity and in both white and red wines it defines its shelf life[1]. The study of minority varieties to produce wines with peculiar characteristics necessarily includes the phenolic and oxidative characterization of the wines produced. This paper presents the study of wines made from 24 minority and majority white and red grape varieties, focusing on phenolic characteristics (total phenols, slightly polymerized phenols, highly polymerized phenols, anthocyanins…), color, as well as parameters related to the oxidability of the wines and their capacity to consume oxygen [2].

Study of Spanish wine sensory analysis data over a 3-year period

This study presents an investigation based on sensory analysis data of Spanish wines with geographical indications collected over a three-year period. Sensory analysis plays a crucial role in assessing the quality, characteristics, and perception of wines. The trained tasting panel at Dolmar Laboratory, accredited for objective sensory evaluation of wines since 2016, has been tasting over 5000 wines. However, it is since 2021, when a computer application for tastings was developed, that the digitalization of data allows for detailed statistical analysis of the results.

Symbiotic microorganisms application in vineyards: impacts on grapevine performance and microbiome

Microorganism-based inoculants have been suggested as a viable solution to mitigate the adverse effects of climate change on viticulture. However, the actual effectiveness of these inoculants when applied under field conditions remains a challenge, and their effects on the existing soil microbiota are still uncertain. This study investigates the impact of arbuscular mycorrhizal fungi inoculation on grapevine performance and microbiome. The study was conducted in a vineyard of Callet cultivar in Binissalem, Mallorca, Spain. Two different treatments were applied: control and inoculation with commercial mycorrhizae complex of Rhizoglomus irregulare applied to plants through irrigation.