terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Analysis of the interaction of melatonin with glycolytic proteins in Saccharomyces cerevisiae during alcoholic fermentation 

Analysis of the interaction of melatonin with glycolytic proteins in Saccharomyces cerevisiae during alcoholic fermentation 

Abstract

Melatonin is a bioactive compound with antioxidant properties, that has been found in many fermented beverages, such as beer and wine [1]. Indeed, it has been shown that yeast can synthesize melatonin during alcoholic fermentation, although its role inside the cell, as well as the metabolic pathway involved in its synthesis, is still unclear [1]. Recent studies showed that during fermentation, melatonin interacts with different proteins of the glycolytic pathway in both Saccharomyces and non-Saccharomyces yeast, for instance glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase or enolase [2]. The aim of this study was to deepen in the role of the melatonin within yeast cells, and in the interaction with glycolytic proteins. For that purpose, we performed fermentations with both single and double mutant strains of the different glyceraldehyde 3-phosphate dehydrogenase isoforms (Tdh1, Tdh2 and Tdh3). Melatonin from fermentation samples was analyzed by liquid chromatography mass spectrometry, and proteins bound to melatonin were immunopurified by melatonin IgG-Dynabeads. Intracellular melatonin on the tdhmutant strains during fermentation showed a similar pattern to the wild type strain. Regarding the protein binding to melatonin, in the single and double mutants, we observed that there was only protein binding when the Tdh2 protein was present. Then, we analysed the possible binding sites between Tdh2 and melatonin, using Swissdock and UFCS Chimera programs. The prediction showed that melatonin can form two hydrogen bonds with Tdh2. The results of this study indicate the binding site of melatonin to Tdh2 during fermentation, which could be related to the regulation of yeast carbon metabolism.

This work has been financed by the project PDI2019-108722RB-C33 (MCIN/AEI/10.13039/ 501100011033). SME has had a Martí-Franquès predoctoral grant (2019PMF-PIPF-92).

1)  Mas, A. et al. (2014) Bioactive compounds derived from the yeast metabolism of aromatic amino acids during alcoholic fermentation. Biomed Res Int. 2014;2014:898045, DOI 10.1155/2014/898045

2)  Morcillo-Parra, M.A. et al. (2020) Melatonin and glycolytic protein interactions are related to yeast fermentative capacity. Food Microbiol., 87, DOI 10.1016/j.fm.2019103398

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Sandra Martín-Esteban*, Albert Mas, Gemma Beltran, María-Jesús Torija

Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia. Facultat d’Enologia, Universitat Rovira i Virgili. C/ Marcel·lí Domingo, 1, 43007, Tarragona

Contact the author*

Keywords

fermentation, melatonin, glycolysis, glyceraldehyde 3-phosphate dehydrogenase

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Response of red grape varieties irrigated during the summer to water availability at the end of winter in four Spanish wine-growing regions: berry phenolic composition

Water availability is the most limiting factor for vineyard productivity under Mediterranean conditions. Due to the effects caused by the current climate change, wine-growing regions may face serious soil moisture conservation problems, due to the lower water retention capacity of the soil and higher soil irradiation. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETo) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on berry phenolic composition at harvest.

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.
In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil.

Characterization of spoilage yeasts from Malbec grapes from San Rafael wine region (Argentina)

The yeast ecosystem in grape musts is quite broad and depends on the region and the health of the grapes. Within this, there are yeasts that can generate fermentative deviations and/or cause defects in the wine. It is very important to address this issue because there are significant economic losses in the wine industry when the fermentation process and/or the organoleptic characteristics of the wine are negatively affected, even more today since climate change has a marked effect on the composition of this ecosystem. The aim of this work is to characterize the behavior regarding detrimental oenological features of potential spoilage yeasts isolated from viticultural environments.

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Physico-chemical properties of vine pruning residues with potential as enological additive

Grapes are one of the world’s primary fruit crops, and pruning activities generate high amounts of annual wood wastes [1]. These pruning shoots contain valuable phenolic compounds and could have numerous potential applications [1,2]. Consequently, the aim of this work was to evaluate the physico-chemical properties of vine pruning residues with potential as enological additives. For this purpose, grapevine shoots from 12 varieties grown in Chile were collected during the winter of 2021.