terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Analysis of the interaction of melatonin with glycolytic proteins in Saccharomyces cerevisiae during alcoholic fermentation 

Analysis of the interaction of melatonin with glycolytic proteins in Saccharomyces cerevisiae during alcoholic fermentation 

Abstract

Melatonin is a bioactive compound with antioxidant properties, that has been found in many fermented beverages, such as beer and wine [1]. Indeed, it has been shown that yeast can synthesize melatonin during alcoholic fermentation, although its role inside the cell, as well as the metabolic pathway involved in its synthesis, is still unclear [1]. Recent studies showed that during fermentation, melatonin interacts with different proteins of the glycolytic pathway in both Saccharomyces and non-Saccharomyces yeast, for instance glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase or enolase [2]. The aim of this study was to deepen in the role of the melatonin within yeast cells, and in the interaction with glycolytic proteins. For that purpose, we performed fermentations with both single and double mutant strains of the different glyceraldehyde 3-phosphate dehydrogenase isoforms (Tdh1, Tdh2 and Tdh3). Melatonin from fermentation samples was analyzed by liquid chromatography mass spectrometry, and proteins bound to melatonin were immunopurified by melatonin IgG-Dynabeads. Intracellular melatonin on the tdhmutant strains during fermentation showed a similar pattern to the wild type strain. Regarding the protein binding to melatonin, in the single and double mutants, we observed that there was only protein binding when the Tdh2 protein was present. Then, we analysed the possible binding sites between Tdh2 and melatonin, using Swissdock and UFCS Chimera programs. The prediction showed that melatonin can form two hydrogen bonds with Tdh2. The results of this study indicate the binding site of melatonin to Tdh2 during fermentation, which could be related to the regulation of yeast carbon metabolism.

This work has been financed by the project PDI2019-108722RB-C33 (MCIN/AEI/10.13039/ 501100011033). SME has had a Martí-Franquès predoctoral grant (2019PMF-PIPF-92).

1)  Mas, A. et al. (2014) Bioactive compounds derived from the yeast metabolism of aromatic amino acids during alcoholic fermentation. Biomed Res Int. 2014;2014:898045, DOI 10.1155/2014/898045

2)  Morcillo-Parra, M.A. et al. (2020) Melatonin and glycolytic protein interactions are related to yeast fermentative capacity. Food Microbiol., 87, DOI 10.1016/j.fm.2019103398

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Sandra Martín-Esteban*, Albert Mas, Gemma Beltran, María-Jesús Torija

Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia. Facultat d’Enologia, Universitat Rovira i Virgili. C/ Marcel·lí Domingo, 1, 43007, Tarragona

Contact the author*

Keywords

fermentation, melatonin, glycolysis, glyceraldehyde 3-phosphate dehydrogenase

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Genetic variation among wild grapes native to Japan

Domesticated grapes are assumed to have originated in the Middle East. However, a considerable number of species are native in East Asian countries such as China, Korea and Japan as well. Evidence suggests that a total of seven species and eight varieties have been found to be native to Japan. A wide level variation in morphology, genetic and fruit composition exist in wild grape native to Japan.

Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Bacterial antibiotic resistance is a major current health problem. Polyphenols have demonstrated antibacterial activity, and in this work we studied the effect of oenological polyphenols on the growth of intestinal multidrug-resistant strains of human and animal origin. Two Enterococcus faecium strains, resistant to vancomycin and other antibiotics, and four Escherichia coli strains, resistant to ampicillin and other antibiotics, were included in this study. All strains showed multidrug resistant phenotypes and genotypes to at least two antibiotic families.

Crown procyanidin quantification in red wines, rosé wines and Port wines

Condensed grape tannins play a major role in the organoleptic properties and quality of red wine. Recently, a new sub-family of macrocyclic condensed tannins has been identified in red wine and named “crown tannins”. Indeed, the first compound of the family identified and characterised by NMR was the crown procyanidin tetramer which is composed of a macrocyclic structure composed of four (-)-epicatechins link together by B-type interflavanoid linkage in the following an alternative sequences of C4-C8 and C4-C6 linkage. The 3D structure of this unusual crown procyanidin family reveals a central cavity in the molecule [1].

is the overall ecological awarness among Spanish winemakers related to their attitudes towards natural wines?

The Agenda 2030 of the EU sets out the main guidelines for transitioning towards a resilient, green and safe economy. To this regard, the wine sector is experiencing an ecological transition in different ways such as increasing the production of ecological crops, or promoting the production of wines under more environmental-friendly and healthier (i.e., lower levels of SO2) products. These alternatives to conventional production are a smaller proportion of wines, in constant growth and demand, and follow alternative and minority practices, which range from sustainable to deeply philosophical thoughts. Among these methods there are organic, biodynamic and, more recently, natural wines.

Exploring relationships among grapevine chemical and physiological parameters and mycobiome composition under drought stress

Improving our knowledge on biotic and abiotic factors that influence the composition of the grapevine mycobiome is of great agricultural significance, due to potential effects on plant health, productivity, and wine characteristics. Among the various environmental factors affecting the morphological, physiological, biochemical and molecular attributes of grapevine, drought stress is one of the most severe, becoming increasingly an issue worldwide.