terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Analysis of the interaction of melatonin with glycolytic proteins in Saccharomyces cerevisiae during alcoholic fermentation 

Analysis of the interaction of melatonin with glycolytic proteins in Saccharomyces cerevisiae during alcoholic fermentation 

Abstract

Melatonin is a bioactive compound with antioxidant properties, that has been found in many fermented beverages, such as beer and wine [1]. Indeed, it has been shown that yeast can synthesize melatonin during alcoholic fermentation, although its role inside the cell, as well as the metabolic pathway involved in its synthesis, is still unclear [1]. Recent studies showed that during fermentation, melatonin interacts with different proteins of the glycolytic pathway in both Saccharomyces and non-Saccharomyces yeast, for instance glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase or enolase [2]. The aim of this study was to deepen in the role of the melatonin within yeast cells, and in the interaction with glycolytic proteins. For that purpose, we performed fermentations with both single and double mutant strains of the different glyceraldehyde 3-phosphate dehydrogenase isoforms (Tdh1, Tdh2 and Tdh3). Melatonin from fermentation samples was analyzed by liquid chromatography mass spectrometry, and proteins bound to melatonin were immunopurified by melatonin IgG-Dynabeads. Intracellular melatonin on the tdhmutant strains during fermentation showed a similar pattern to the wild type strain. Regarding the protein binding to melatonin, in the single and double mutants, we observed that there was only protein binding when the Tdh2 protein was present. Then, we analysed the possible binding sites between Tdh2 and melatonin, using Swissdock and UFCS Chimera programs. The prediction showed that melatonin can form two hydrogen bonds with Tdh2. The results of this study indicate the binding site of melatonin to Tdh2 during fermentation, which could be related to the regulation of yeast carbon metabolism.

This work has been financed by the project PDI2019-108722RB-C33 (MCIN/AEI/10.13039/ 501100011033). SME has had a Martí-Franquès predoctoral grant (2019PMF-PIPF-92).

1)  Mas, A. et al. (2014) Bioactive compounds derived from the yeast metabolism of aromatic amino acids during alcoholic fermentation. Biomed Res Int. 2014;2014:898045, DOI 10.1155/2014/898045

2)  Morcillo-Parra, M.A. et al. (2020) Melatonin and glycolytic protein interactions are related to yeast fermentative capacity. Food Microbiol., 87, DOI 10.1016/j.fm.2019103398

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Sandra Martín-Esteban*, Albert Mas, Gemma Beltran, María-Jesús Torija

Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia. Facultat d’Enologia, Universitat Rovira i Virgili. C/ Marcel·lí Domingo, 1, 43007, Tarragona

Contact the author*

Keywords

fermentation, melatonin, glycolysis, glyceraldehyde 3-phosphate dehydrogenase

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The characterization of Vitis vinifera L cv. Cabernet sauvignon: the contribution of Ecklonia maxima seaweed extract

Biostimulants and biofertilizers are considered environmentally friendly and cost-effective alternatives to synthetic fertilizers, plant growth regulators and crop improvement products. Broadly, plant biostimulants are expected to improve nutrient use efficiency, tolerance to abiotic stress, quality traits and availability of nutrients in the soil or rhizosphere. Currently, seaweed extracts account for more than 33% of the total plant biostimulant market. Within this category, Ascophyllum nodosum (AN), is the most widely studied and applied in biostimulant formulations.

Crown procyanidin quantification in red wines, rosé wines and Port wines

Condensed grape tannins play a major role in the organoleptic properties and quality of red wine. Recently, a new sub-family of macrocyclic condensed tannins has been identified in red wine and named “crown tannins”. Indeed, the first compound of the family identified and characterised by NMR was the crown procyanidin tetramer which is composed of a macrocyclic structure composed of four (-)-epicatechins link together by B-type interflavanoid linkage in the following an alternative sequences of C4-C8 and C4-C6 linkage. The 3D structure of this unusual crown procyanidin family reveals a central cavity in the molecule [1].

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.

Impact of toasting and botanical origin on oak wood (Q. sp.) volatilome using untargeted GCxGC-ToFMS analysis

Many works have been carried out to identify the key aroma volatile compounds of oak wood (e.g., whisky-lactone, furfural, maltol, eugenol, guaiacol, vanillin) using conventional gas chromatography coupled with olfactometry and mass spectrometry (GC-O-MS). Inspired by recent untargeted approaches in the field of food “omics”, this work aims to extend our knowledge on the impact of cooperage process on the volatile composition of oak wood using two-dimensional comprehensive gas chromatography coupled with time of flight mass spectrometry (GCxGC-ToFMS).

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.