terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Analysis of the interaction of melatonin with glycolytic proteins in Saccharomyces cerevisiae during alcoholic fermentation 

Analysis of the interaction of melatonin with glycolytic proteins in Saccharomyces cerevisiae during alcoholic fermentation 

Abstract

Melatonin is a bioactive compound with antioxidant properties, that has been found in many fermented beverages, such as beer and wine [1]. Indeed, it has been shown that yeast can synthesize melatonin during alcoholic fermentation, although its role inside the cell, as well as the metabolic pathway involved in its synthesis, is still unclear [1]. Recent studies showed that during fermentation, melatonin interacts with different proteins of the glycolytic pathway in both Saccharomyces and non-Saccharomyces yeast, for instance glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase or enolase [2]. The aim of this study was to deepen in the role of the melatonin within yeast cells, and in the interaction with glycolytic proteins. For that purpose, we performed fermentations with both single and double mutant strains of the different glyceraldehyde 3-phosphate dehydrogenase isoforms (Tdh1, Tdh2 and Tdh3). Melatonin from fermentation samples was analyzed by liquid chromatography mass spectrometry, and proteins bound to melatonin were immunopurified by melatonin IgG-Dynabeads. Intracellular melatonin on the tdhmutant strains during fermentation showed a similar pattern to the wild type strain. Regarding the protein binding to melatonin, in the single and double mutants, we observed that there was only protein binding when the Tdh2 protein was present. Then, we analysed the possible binding sites between Tdh2 and melatonin, using Swissdock and UFCS Chimera programs. The prediction showed that melatonin can form two hydrogen bonds with Tdh2. The results of this study indicate the binding site of melatonin to Tdh2 during fermentation, which could be related to the regulation of yeast carbon metabolism.

This work has been financed by the project PDI2019-108722RB-C33 (MCIN/AEI/10.13039/ 501100011033). SME has had a Martí-Franquès predoctoral grant (2019PMF-PIPF-92).

1)  Mas, A. et al. (2014) Bioactive compounds derived from the yeast metabolism of aromatic amino acids during alcoholic fermentation. Biomed Res Int. 2014;2014:898045, DOI 10.1155/2014/898045

2)  Morcillo-Parra, M.A. et al. (2020) Melatonin and glycolytic protein interactions are related to yeast fermentative capacity. Food Microbiol., 87, DOI 10.1016/j.fm.2019103398

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Sandra Martín-Esteban*, Albert Mas, Gemma Beltran, María-Jesús Torija

Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia. Facultat d’Enologia, Universitat Rovira i Virgili. C/ Marcel·lí Domingo, 1, 43007, Tarragona

Contact the author*

Keywords

fermentation, melatonin, glycolysis, glyceraldehyde 3-phosphate dehydrogenase

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Quantification of polysaccharides of variety Pomaces of the D.O.Ca Rioja

Pomace is one of the main residues generated by the wine industry and represents an environmental problem. Currently, there is a growing interest in the revaluation of these products because different bioactive compounds can be obtained from them, such as polyphenols, grape seed oils and polysaccharides. Red grape pomace can be an important source of polysaccharides, but they are currently little studied and even less with viable and environmental extraction processes (green extraction), such as flash extraction. The residual amount of the fraction rich in pectin (residual pulp) and component rich in hemicellulose in the pomace and the strength of association of the pectin with the cellulose-xyloglucan network depend on the degree of extractability of the polysaccharides in red winemaking and on the winemaking conditions.

Model-assisted analysis of the root traits underlying RSA genotypic diversity in Vitis: a promising approach for rootstock selection?

By dissecting the root system architecture (RSA) into its underpinning components (e.g. root emission, axial growth, radial growth, branching, root direction or tropism) and identifying the relationships between them, functional-structural 3D root models are promising tools for analyzing the diversity and complexity of root system phenotypes with Genotype × Environment interactions. The model parameters are assumed to be synthetic traits, less influenced by the environment, and consequently with less polygenic architectures than the integrative RSA traits they drive. Root models can serve as a basis for in silico development of root system ideotypes by highlighting the developmental processes and parameters that most likely influence RSA fitness.

Oxidability of wines made from Spanish minority grape varieties

The phenolic profile of a wine plays an essential role in its oxidative capacity and in both white and red wines it defines its shelf life[1]. The study of minority varieties to produce wines with peculiar characteristics necessarily includes the phenolic and oxidative characterization of the wines produced. This paper presents the study of wines made from 24 minority and majority white and red grape varieties, focusing on phenolic characteristics (total phenols, slightly polymerized phenols, highly polymerized phenols, anthocyanins…), color, as well as parameters related to the oxidability of the wines and their capacity to consume oxygen [2].

Response of red grape varieties irrigated during the summer to water availability at the end of winter in four Spanish wine-growing regions: berry phenolic composition

Water availability is the most limiting factor for vineyard productivity under Mediterranean conditions. Due to the effects caused by the current climate change, wine-growing regions may face serious soil moisture conservation problems, due to the lower water retention capacity of the soil and higher soil irradiation. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETo) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on berry phenolic composition at harvest.

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).