GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Survey reveals training needs for airblast sprayer operators

Survey reveals training needs for airblast sprayer operators

Abstract

Context and purpose of the study – In California, little training in sprayer calibration or pesticide drift management is required to apply pesticides. Yet, there is a need to maximize pesticide efficacy and minimize drift. Therefore, our team is developing a training course on airblast application best practices. We distributed a survey to identify current practices and used importance-performance analysis to interpret responses to the importance of spray related topics and satisfaction with previous training.

Material and methods – In 2018 we solicited survey replies, receiving 219 responses from winegrape and orchard industry members. Respondents rated 18 spray topics using a Likert-type scale. Topic categories included sprayer calibration, weather, techniques to reduce drift, and applicator attitude. Respondents rated 1) how important each topic is to them and 2) how satisfied they are with the quality of training they had previously received; or “no training received”. Results were calculated by topic as the mean importance (y) and satisfaction with training (x), and graphed using (x,y) as coordinates. The overall importance and performance means were used to define graph quadrants; the resulting topic placement in the quadrants prioritized training needs. We also asked: “Do you change your sprayer set up?”, “What steps do you take to calibrate?” and “Have you experienced a pest control failure that could have been related to a poor spray application?”

Results – Checking spray coverage ranked the most important topic while improving safety ranked highest for satisfaction. Topics fell into quadrants: 1.-high priority: checking coverage, selecting nozzles, reducing costs, and measuring flow; 2.-less emphasis: measuring application rate, measuring speed, improving safety, checking wind speed, reducing drift, and checking pressure; 3.-low interest: reducing spray loss to the ground, adjusting air flow, determining droplet size, checking temperature, determining if an inversion exists, using the low-drift technique “Gear up, Throttle down”, and checking relative humidity; 4.-low priority: checking wind direction. Responses to “What steps do you take to calibrate?” included measuring speed (44.9%), spraying out the tank to a known area (35.6%) and checking nozzles (34.7%). Only 8.1% of respondents check coverage and 5.9% admitted not calibrating or not often. 38% do not change their sprayer set-up once the season begins. Over half experienced a pest control failure they suspect was due to poor application; grape powdery mildew had the highest perceived failure. Respondents understand drift is undesirable but assign less importance to practices to reduce drift incidence, possibly due to lack of training received by 6-23%. Our course will focus on high priority topics; and checking weather and equipment to minimize drift.

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

Lynn WUNDERLICH1, Franz NIEDERHOLZER2, Lisa BLECKER3, Rhonda J. SMITH4, Stephanie BOLTON5

1 UCCE, 311 Fair Lane, Placerville, California, 95667 USA
2 UCCE, P.O. Box 180, 100 Sunrise Blvd., Colusa, California, 95932 USA
3 UCIPM, 2801 Second St., Davis, California, 95618 USA
4 UCCE, 133 Aviation Blvd. Santa Rosa, California, 95403 USA
5 Lodi Winegrape Commission, 2545 Turner Rd., Lodi, California, 95242 USA

Contact the author

Keywords

Airblast sprayer, calibration, training, survey 

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Assessing bunch architecture for grapevine yield forecasting by image analysis 

It is fundamental for wineries to know the potential yield of their vineyards as soon as possible for future planning of winery logistics. As such, non-invasive image-based methods are being investigated for early yield prediction. Many of these techniques have limitations that make it difficult to implement for practical use commercially. The aim of this study was to assess whether yield can be estimated using images taken in-field with a smartphone at different phenological stages.

Is early defoliation a sustainable management practice for mediterranean vineyards? Case studies at the portuguese lisbon winegrowing region

Context and purpose of the study ‐ Recently early defoliation (ED) has been tested in several high‐ yielding grapevine varieties and sites aiming at reducing cluster compactness and hence, regulating yield and susceptibility to botrytis bunch rot infection. The reported results have been generally positive, encouraging growers to use this canopy management technique as an alternative for replacing the conventional time‐consuming cluster thinning and, simultaneously, as a sustainable practice to reduce the use of fungicides. However, ED increases berry sunburn risks and/or can induce carry‐over effects on vigor and node fruitfulness as shown in the two case studies reported in this work.

Sensitivity of vis‐nir spectral indices to detect nitrogen deficiency and canopy function in cv. Barbera (Vitis vinifera L.) Grapevines

Precision nutrient management in viticulture can be addressed on the basis of a spatial characterization of within‐vineyard vine

Rootstock differences in soil-water uptake during drying-wetting cycles imaged with 3d electrical resistivity tomography

Limited knowledge has been acquired on grapevine roots and rhizosphere processes because of harder access when compared to aerial parts. There is need for new methods to study root behavior in undisturbed field conditions, and relate these effects on canopy and yield. The aim of this multidisciplinary study was to image and quantify spatial-temporal differences in soil-water uptake by genetically different rootstocks and to assess the response of the canopy during drought and rewetting.

Modeling sugar accumulation dynamics of a wide variety of grape cultivars (Vitis vinifera L.)

Climate change is a major challenge in wine production. The IPCC (2014) projected that by the end of the 21st century average temperatures will increase by 1-3.7°C. Consequently, harvest dates could advance by approximately 30 days. A general observed trend is the increase in berry sugar content and decrease in organic acids, posing challenges for winegrowers. Variability among cultivars is a precious resource to adapt viticulture to a changing environment.