GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Water potential in cv. Verdejo: response at different day times to the variation of water regime in the d.o. rueda (Spain)

Water potential in cv. Verdejo: response at different day times to the variation of water regime in the d.o. rueda (Spain)

Abstract

Context and purpose of the study ‐ Irrigation management is a critical aspect in grapevine cultivation to regularize grape production and quality in areas of clear water limitation. The scarcity of information implies the need to know the plant water status to make an estimate of the response of cv. Verdejo to the variation of water regime in vineyard cultivation.

Material and methods ‐ Throughout the 2016, 2017 and 2018 seasons, the vine water status was studied through the measurement of leaf and xylem water potential, at different times of the day, as response to the application of three treatments of water regime: rainfed (R0), irrigation of 30% ETo from beginning of veraison (R1) and irrigation of 30% ETo from pea size (R2), in both cases until harvest. The trial was developed with vines of cv. Verdejo, on 110R, planted in 2006 and vertically trellised trained, in the D.O. Rueda (Spain).

Results ‐ The various types of measurement of water potential showed significantly less negative values in the irrigated vines (R2) than in the non‐irrigated ones (R0 and R1) until veraison, with more or less delay, compared to the start of irrigation in R2, depending on the year and on the measurement time. The measurement of xylem water potential, at 12 hs, showed a slight delay in the appreciation of the significant differences favorable to R2. In contrast, the measure at 7 hs in leaves on the shaded side showed greater immediacy in the favorable discrimination to R2 the driest year, 2017. The wettest year, 2018, none of the potential measurement types was able to show significant differences between treatments throughout the entire period in which only the R2 treatment was irrigated. From the beginning of the application of irrigation in treatment R1, at the beginning of the veraison, the various measurements of water potential showed significant differences favorable to the irrigated treatments (R2 and R1) with respect to the rainfed one (R0), with values slightly less negative of R2 than of R1, at all hours of measurement. However, in the wettest year, 2018, the appearance of these significant differences was delayed in the various types of measurement, but more accentuated in the measure of xylem potential, at 12 hs, and in the 9 hs in leaves of the sunny side, while at 12 hs in leaves of the sunny side it was not registered. The measurement of water potential at 7 hs in shaded leaves was slightly more sensitive to the variation of the water regime, besides being more comfortable to execute, than at 9 and 12 hs in leaves to the sun and, in particular, than that of xylem potential, at 12 hs, which also requires the pre‐bagging of the measuring leaf. Therefore, the measurement of water potential at 7 hs in leaves on the shaded side is interesting as a practical indicator of the water status of the vineyard.

 

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Jesus YUSTE (1), Daniel MARTINEZ‐PORRO (1)

(1) Instituto tecnologico agrario de castilla y Leon, Ctra. Burgos km 119, 47071 Valladolid, Spain

Contact the author

Keywords

Leaf, Pressure chamber, Shade, Sunlight, Xylem

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Reconstructing ancient microbial fermentation genomes from the wine residues of Herod, Roman king of Judea

The fortress of the Herodium, built towards the end of the first century BCE/ante Cristo, on the orders of Herod the Great, Roman client king of Judea, attests the expansion of Roman influence in the eastern Mediterranean. During archaeological excavations of the Herodium in 2017[1], a winery was discovered on the ground floor of the palace, with an assortment of clay vessels in situ, including large dolia – clay fermentation vessels each capable of fermenting up to 300-400 L of wine. Thanks to the recent progresses in the field of paleogenomics[2], we could analyse the organic material consistent with grape pomace at the bottom of these vessels, by extracting and sequencing the DNA using shotgun metagenomics and targeted capture, aiming for enrichment of DNA from fermentation associated microbes.

Co-design and evaluation of spatially explicit strategies of adaptation to climate change in a Mediterranean watershed

Climate change challenges differently wine growing systems, depending on their biophysical, sociological and economic features. Therefore, there is a need to locally design and evaluate adaptation strategies combining several technical options, and considering the local opportunities and constraints (e.g. water access, wine typicity). The case study took place in a typical and heterogeneous Mediterranean vineyard of 1,500 ha in the South of France. We developed a participatory modeling approach to (1) conceptualize local climate change issues and design spatially explicit adaptation strategies with stakeholders, (2) numerically evaluate their effects on phenology, yield and irrigation needs under the high-emissions climate change scenario RCP 8.5, and (3) collectively discuss simulation results. We organized five sets of workshops, with in-between modeling phases. A process-based model was developed that allowed to evaluate the effects of six technical options (late varieties, irrigation, water saving by reducing canopy size, adjusting cover cropping, reducing density, and shading) with various distributions in the watershed, as well as vineyard relocation. Overall, we co-designed three adaptation strategies. Delay harvest strategy with late varieties showed little effects on decreasing air temperature during ripening. Water constraint limitation strategy would compensate for production losses if disruptive adaptations (e.g. reduced density) were adopted, and more land got access to irrigation. Relocation strategy would foster high premium wine production in the constrained mountainous areas where grapevine is less impacted by climate change. This research shows that a spatial distribution of technical changes gives room for adaptation to climate change, and that the collaboration with local stakeholders is a key to the identification of relevant adaptation. Further research should explore the potential of adaptation strategies based on soil quality improvement and on water stress tolerant varieties.

Innovative red winemaking strategy: biosurfactant-assisted extraction and stabilization of phenolic compounds

The color is the first attribute perceived by consumers and a major factor determining the quality of red wines. This depends mainly on the content of grape anthocyanins and their extraction into the juice/wine during winemaking. Furthermore, these compounds can undergo reactions that influence the chemical and sensory characteristics of the wine. Monomeric forms are prone to oxidation and adsorption on solid parts.

Changes in the composition and extractability of flavonoids in Cabernet-Sauvignon: influence of site, climate and vine water status

The purpose of the study was to monitor berry development as a function of site, vine water status and climate in order to improve our understanding of the role played by climate change on secondary metabolites relevant to wine quality.

Variability of Tempranillo phenology within the toro do (Spain) and its relationship to climatic characteristics

Aims: The objective of this research was to analyse the spatial and temporal variability of vine phenology of the Tempranillo variety in the Toro Designation of Origen (DO) related to climatic conditions at present and under future climate change scenarios.