terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Wine odors: chemicals, physicochemical and perceptive processes involved in their perception

Wine odors: chemicals, physicochemical and perceptive processes involved in their perception

Abstract

The odors of wines are diverse, complex and dynamic and much research has been devoted to the understanding of their chemical bases. However, while the “basic” chemical part of the problem, namely the identity of the chemicals responsible for the different odor nuances, was satisfactorily solved years ago, there are some relevant questions precluding a clear understanding. These questions are related to the physicochemical interactions determining the effective volatilities of the odorants and, particularly, to the perceptual interactions between different odor molecules affecting in different ways to the final sensory outputs.

The understanding of perceptual interactions has been delayed to a large extent by the common misunderstanding that odorants and odors are the same thing. Odorants are, however, chemical entities -volatile molecules- able to impact the olfactory receptors, while odors are the sensory experiences encoded by odorants. A significant part of the code is nowadays known, and can be explained in terms of odor x odor interactions. These interactions can be competitive, cooperative, destructive and creative. Cooperative interactions are relevant because give rise to the concept of odor vector, establishing a key link between the chemical and sensory spaces. Different studies have shown that the nearly 80 main wine odorants form 35 different wine aroma vectors, classified into 10-different aroma categories. Yet, aroma vectors can further interact by creative interactions to form new aroma nuances. Some of these interactions have been identified and will be shown. Furthermore, destructive interactions can also take a major role in wine, since ethanol and the higher alcohols are strong aroma suppressors. These suppression effects are of the highest interest in wine dealcoholization.

Finally, it will be shown that physicochemical interactions with different matrix components are enough to change the volatilities of some odorants by factors between 2 and 4, more than enough to have sensory relevance.

Acknowledgement. Most of this research has been funded by the Spanish government (projects MYCIN PID2021-126031OB; MINECO AGL2017-87373)

DOI:

Publication date: October 20, 2023

Issue: ICGWS 2023

Type: Article

Authors

Vicente Ferreira

Laboratory for Aroma Analysis and Enology (LAAE), University of Zaragoza, Spain

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

REGAVID a decision tool to deficit irrigation in a temperate climate (DO Monterrei – Spain)

In temperate climates, such as in the North of Spain, the use of irrigation in the vineyard has not been required, due to the usual rainfall from June to August. In some large vineyards, irrigation management has been carried out, based on occasional support irrigation, or for the application of nutrients (fertigation). Currently it is necessary to implement decision support models to manage irrigation water in real time and avoid misuse of a scarce resource. Moreover, quality standards must be achieved, as in the previous rainfed viticulture.

Glucosidase and esterase salivary activities and their involvement in consumer’s wine sensory perception and liking

Wine flavour is the integration of distinct physiologically defined sensory systems that combine taste, aroma and trigeminal sensations, and it is a key determinant factor for the acceptance of wine by consumers. Volatile compounds, are important contributors to wine flavour, specially to aroma. These small and low-boiling point compounds are easily released into the air allowing to enter and move within the nasal or oral cavities where they can bind the olfactory receptors. Additionally, wine also contains aroma precursors, which are non-volatile compounds, but that can be broken down releasing volatile odorants. During wine tasting, all these chemicals (volatiles and non-volatiles) can be submitted to the action of salivary enzymes.

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition.

The combined use of Lachancea thermotolerans and lactic bacteria in wine technology

The production of most red wines that are sold involves an alcoholic fermentation carried out by yeasts of the Saccharomyces genus, and a subsequent fermentation carried out by lactic bacteria of the Oenococus oeni species after the first one is fully completed. However, the traditional process can face complications, which can be more likely in grape juices with high levels of sugar and pH. Because of climate change, these situations are more frequent in the wine industry. The main hazards in those scenarios are halts or delays in the alcoholic fermentation or the growth of unwanted bacteria while the alcoholic fermentation is not done yet and the wine still has residual sugars.

Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Wine, a sensitive and intricate agricultural product, is being affected by climate change, which accelerates grapevine phenological stages and alters grape composition and ripening. This influences the synthesis of key aroma compounds, shaping wine’s sensory attributes [1]. The complex aroma profile, resulting from compound interactions, presents a metabolomics challenge to identify these indicators and their environmental change responses, which is being addressed using diverse analytical techniques.