terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Wine odors: chemicals, physicochemical and perceptive processes involved in their perception

Wine odors: chemicals, physicochemical and perceptive processes involved in their perception

Abstract

The odors of wines are diverse, complex and dynamic and much research has been devoted to the understanding of their chemical bases. However, while the “basic” chemical part of the problem, namely the identity of the chemicals responsible for the different odor nuances, was satisfactorily solved years ago, there are some relevant questions precluding a clear understanding. These questions are related to the physicochemical interactions determining the effective volatilities of the odorants and, particularly, to the perceptual interactions between different odor molecules affecting in different ways to the final sensory outputs.

The understanding of perceptual interactions has been delayed to a large extent by the common misunderstanding that odorants and odors are the same thing. Odorants are, however, chemical entities -volatile molecules- able to impact the olfactory receptors, while odors are the sensory experiences encoded by odorants. A significant part of the code is nowadays known, and can be explained in terms of odor x odor interactions. These interactions can be competitive, cooperative, destructive and creative. Cooperative interactions are relevant because give rise to the concept of odor vector, establishing a key link between the chemical and sensory spaces. Different studies have shown that the nearly 80 main wine odorants form 35 different wine aroma vectors, classified into 10-different aroma categories. Yet, aroma vectors can further interact by creative interactions to form new aroma nuances. Some of these interactions have been identified and will be shown. Furthermore, destructive interactions can also take a major role in wine, since ethanol and the higher alcohols are strong aroma suppressors. These suppression effects are of the highest interest in wine dealcoholization.

Finally, it will be shown that physicochemical interactions with different matrix components are enough to change the volatilities of some odorants by factors between 2 and 4, more than enough to have sensory relevance.

Acknowledgement. Most of this research has been funded by the Spanish government (projects MYCIN PID2021-126031OB; MINECO AGL2017-87373)

DOI:

Publication date: October 20, 2023

Issue: ICGWS 2023

Type: Article

Authors

Vicente Ferreira

Laboratory for Aroma Analysis and Enology (LAAE), University of Zaragoza, Spain

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Nitrogen (N) is quite important nutrient in grapevine development and must quality, but under Mediterranean climatic conditions, available soil water (ASW) during grapevine development can also influence vigour and must quality. The aim was to determine the influence of soil nitrate (NO3-) availability on N foliar, yield, and must quality in vineyards with similar available water holding capacity (AWC). For this purpose, four cv. Tempranillo (Vitis vinifera L.) vineyards were selected. All of them are placed in Uruñuela municipality (La Rioja, Spain), separated less than 2.5 km and in a slope <1 %, in soils with similar soil chemistry properties and with similar rooting depth (ranging between 105 cm and 110 cm).

Sparkling wines and atypical aging: investigating the risk of refermentation

Sparkling wine (SW) production entails a two-steps process where grape must undergoes a primary fermentation to produce a base wine (BW) which is then refermented to become a SW. This process allows for the development of a new physicochemical profile characterized by the presence of foam and a different organoleptic profile.

Teinturier grapes: Valorization as a source of high-value compounds for the Chilean food industry

The agri-food industry is constantly searching for ingredients of high functional value, healthy and of natural origin. One species of particular interest is Vitis vinifera, due to its recognized antioxidant potential. Among the grape varieties, one group possesses these antioxidant compounds not only in the skin, but also in its pulp: Teinturier. The red grape has traditionally been used for color correction purposes in winemaking, however, its high antioxidant content transforms it into a raw material of high potential for new formulations of ingredients and foods for the health and wellness market.

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes.

Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Volatile organic compounds (VOCs) are emitted by nearly all plant organs of the plants, including leaves. They play a key role in the communication with other organisms, therefore they are involved in plant defence against phytopathogens. In this study VOCs from grapevine leaves of two varieties of Vitis vinifera infected by Erysiphe necator were analysed. The varieties were selected based on their susceptibility to pathogen, Kishmish Vatkana has the Ren1 resistance gene and Zamarrica showed high susceptibility in previous trials.