terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Wine odors: chemicals, physicochemical and perceptive processes involved in their perception

Wine odors: chemicals, physicochemical and perceptive processes involved in their perception

Abstract

The odors of wines are diverse, complex and dynamic and much research has been devoted to the understanding of their chemical bases. However, while the “basic” chemical part of the problem, namely the identity of the chemicals responsible for the different odor nuances, was satisfactorily solved years ago, there are some relevant questions precluding a clear understanding. These questions are related to the physicochemical interactions determining the effective volatilities of the odorants and, particularly, to the perceptual interactions between different odor molecules affecting in different ways to the final sensory outputs.

The understanding of perceptual interactions has been delayed to a large extent by the common misunderstanding that odorants and odors are the same thing. Odorants are, however, chemical entities -volatile molecules- able to impact the olfactory receptors, while odors are the sensory experiences encoded by odorants. A significant part of the code is nowadays known, and can be explained in terms of odor x odor interactions. These interactions can be competitive, cooperative, destructive and creative. Cooperative interactions are relevant because give rise to the concept of odor vector, establishing a key link between the chemical and sensory spaces. Different studies have shown that the nearly 80 main wine odorants form 35 different wine aroma vectors, classified into 10-different aroma categories. Yet, aroma vectors can further interact by creative interactions to form new aroma nuances. Some of these interactions have been identified and will be shown. Furthermore, destructive interactions can also take a major role in wine, since ethanol and the higher alcohols are strong aroma suppressors. These suppression effects are of the highest interest in wine dealcoholization.

Finally, it will be shown that physicochemical interactions with different matrix components are enough to change the volatilities of some odorants by factors between 2 and 4, more than enough to have sensory relevance.

Acknowledgement. Most of this research has been funded by the Spanish government (projects MYCIN PID2021-126031OB; MINECO AGL2017-87373)

DOI:

Publication date: October 20, 2023

Issue: ICGWS 2023

Type: Article

Authors

Vicente Ferreira

Laboratory for Aroma Analysis and Enology (LAAE), University of Zaragoza, Spain

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.

Agronomic and oenological behavior of the minority Mandón variety on two rootstocks in the D.O. Arribes

A large population of vines of the Mandón minority red variety (synonymous with Garró) has been located in old vineyards of the D.O. Arribes (Zamora and Salamanca) to conserve and recover this minority variety. The wines made with this variety are characterized by their good structure and color, interesting harmony, an excellently low pH, with high acidity, as well as complex aromas of blue fruits and a marked and expressive minerality.

Energy partitioning and functionality of photosystem II in water-stressed grapevines during heatwaves revealed by continuous measurements of chlorophyll fluorescence

The increased intensity and frequency of heatwaves, coupled with prolonged periods of drought, are a significant threat to viticulture worldwide. During these conditions the more exposed leaves can show visible symptoms of heat damage. We monitored the functionality of photosystem II (PSII) in the field to better understand the impact of heatwaves on canopy performance. A factorial experiment was established in summer 2023 using Shiraz grapevines in the Barossa valley of South Australia, involving water-stressed and well-watered vines.

Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Rootstocks were the first sustainable and environmentally friendly strategy to cope with a major threat for Vitis vinifera cultivation. In addition to providing Phylloxera resistance, they play an important role in protecting against other soil-borne pests, such as nematodes, and in adapting V. vinifera to limiting abiotic conditions. Today viticulture has to adapt to ongoing climate change whilst simultaneously reducing its environmental impact. In this context, rootstocks are a central element in the development of agro-ecological practices that increase adaptive potential with low external inputs. Despite the apparent diversity of the Vitis genus, only few rootstock varieties are used worldwide and most of them have a very narrow genetic background. This means that there is considerable scope to breed new, improved rootstocks to adapt viticulture for the future.

Effect on the grape and wine characteristics of cv. Tempranillo at 3 production levels

The vineyard has experienced a general increase in yields mainly due to the elevated use of technology which caused a quality loss of grapes in more than one case. A large percentage of the Spanish vineyard is covered by a Denomination of Origin which limits the productive level of the vineyards as one of its regulations. The maximum production limit is a variable characteristic of each vineyard and is not usually regulated by agronomic criteria, and this explains the fact that each vineyard can reach high quality with a totally different yield from that set by the Denomination of Origin.