GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 How to develop strategies of adaptation to climate change based on a foresight exercise?

How to develop strategies of adaptation to climate change based on a foresight exercise?

Abstract

Context and purpose of the study ‐ Prospective studies raise a real intellectual interest for those who contribute to them or take cognizance of it. But they are often considered too difficult to operationalize, and most of the prospective exercises are not followed by action plans, particularly at value chain level. To overcome this difficulty in linking the work of experts and the decisions of stakeholder of value chains, a particular effort was made to operationalize the outcomes from a prospective study on the French vine and wine industry in the context of climate change. The approach consisted in collecting and using the feed‐back of professionalsfrom the wine industry about these outcomes to feed a strategic think‐tank and thus allow decision‐makers of the industry “to come back to the present, better equipped to influence it according to [their] intentions and [ their] requirements “(Sébillotte, 2002).

Material and methods ‐ From 2014 to 2016, a foresight exercise was carried out within the framework of the Laccave project, and permitted to design 4 adaptation strategies to climate change (conservative, innovative, nomadic, liberal) and to describe the paths leading to them (Aigrain et al. , 2017). In 2017, six participatory seminars were organized in the main French wine regions: Bordeaux / Cognac, Champagne, Burgundy, Languedoc, Rhône Valley and Alsace. During each of them, between 60 and 100 stakeholders of the industry were invited to discuss in small groups about the issues and consequences of each proposed strategy. Then, they were asked to identify the desirable or threatening nature of these strategies and to make proposals for actions that could promote or prevent their occurrence. All information collected was recorded in the form of verbatim (Aigrain et al., 2018).

Results ‐ From these participatory workshops, the majority favored the development of technical innovations in order to maintain the current location of French vineyards and the value associated with them, while questioning the limits to keep the specificity of each appellation. The positioning vis‐à‐vis the conservative strategy is variable and depends on the regions. The appearance of new viticultural zones is concerning and represents a point of vigilance for the participants. The treatment of these numerous contributions is currently fueling the construction, in France, of a national strategy to adapt the vine and wine sector to climate change

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Patrick AIGRAIN1, Benjamin BOIS8, Françoise BRUGIERE1, Eric DUCHENE7, Inaki GARCIA de CORTAZAR‐ATAURI6, Jacques GAUTIER2, Eric GIRAUD‐HERAUD5, Roy HAMMOND4, Hervé HANNIN3, Jean‐Marc TOUZARD4, Nathalie OLLAT5

(1) FranceAgriMer Montreuil – France
(2) INAO Montreuil – France
(3) Univ Montpellier, MOISA, Montpellier SupAgro/IHEV, Montpellier – France
(4) Univ Montpellier, Innovation, INRA, Montpellier – France
(5) EGFV, -Bordeaux Sciences Agro INRA Univ. Bordeaux, ISVV Bordeaux I– France
(6) Agroclim, INRA Avignon – France
(7) SVQV, INRA Colmar – France
(8) Université de Bourgogne Dijon – France Corresponding author

Contact the author

Keywords

Climate change, Vine and Wine industry, Adaptation, Foresight exercise, Participative approach

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Dispersive liquid-liquid microextraction for the quantification of terpens in wines

In a highly competitive worldwide market, a current challenge for the beverage sector is to diversify the range of products and to offer wines and spirits with typicity and character.

During alcoholic fermentation, wine yeasts generate a large variety of volatile metabolites, including acetate esters, ethyl fatty acid esters, higher alcohols, volatile fatty acids and volatile sulfur compounds that contribute to the aroma profile of wine. These molecules, refered as fermentative aromas, are the most abundant volatile compounds synthetized by yeasts and the metabolic pathways involved in their formation have been well characterized. Furthermore, other molecules with a major organoleptic impact may be produced during wine fermentation including terpene derivatives. However, little information is available on the contribution of yeasts to the formation of these molecules, in particular on their ability to synthethise de novo the terpens derivatives or to produce hydrolytic enzymes involved in the release of varietal precursors.

Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Wine contains secondary metabolites derived from aromatic amino acids (AADC), which can determine quality, stability and bioactivity. Several yeast species, as well as some lactic acid bacteria (LAB), can contribute in the production of these aromatic compounds. Winemaking should be studied as a series of microbial interactions, that work as an interconnected network, and can determine the metabolic and analytical profiles of wine. The aim of this work was to select microorganisms (yeast and LAB) based on their potential to produce AADC compounds, such as tyrosol and hydroxytyrosol, and design a microbial consortium that could increase the production of these AADC compounds in wines.

Physico-chemical properties of vine pruning residues with potential as enological additive

Grapes are one of the world’s primary fruit crops, and pruning activities generate high amounts of annual wood wastes [1]. These pruning shoots contain valuable phenolic compounds and could have numerous potential applications [1,2]. Consequently, the aim of this work was to evaluate the physico-chemical properties of vine pruning residues with potential as enological additives. For this purpose, grapevine shoots from 12 varieties grown in Chile were collected during the winter of 2021.

Separation and elucidation of ethylidene-bridged catechin oligomers using preparative-HPLC and NMR

During wine aging, small amounts of oxygen are absorbed and initiate a cascade of oxidation reactions. These aging reactions create many products including ethylidene-bridged oligomers and polymers of endogenous polyphenols, like flavan-3ols.

Impacts of fumaric acid addition at the bottling on Cabernet Sauvignon wine quality. Comparison with tartaric acid addition.

Climate change and reduction of inputs are two major challenges for viticulture and oenology. With increasing temperature, wines become less acid and microbiologically less stable (1).