GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 How to develop strategies of adaptation to climate change based on a foresight exercise?

How to develop strategies of adaptation to climate change based on a foresight exercise?

Abstract

Context and purpose of the study ‐ Prospective studies raise a real intellectual interest for those who contribute to them or take cognizance of it. But they are often considered too difficult to operationalize, and most of the prospective exercises are not followed by action plans, particularly at value chain level. To overcome this difficulty in linking the work of experts and the decisions of stakeholder of value chains, a particular effort was made to operationalize the outcomes from a prospective study on the French vine and wine industry in the context of climate change. The approach consisted in collecting and using the feed‐back of professionalsfrom the wine industry about these outcomes to feed a strategic think‐tank and thus allow decision‐makers of the industry “to come back to the present, better equipped to influence it according to [their] intentions and [ their] requirements “(Sébillotte, 2002).

Material and methods ‐ From 2014 to 2016, a foresight exercise was carried out within the framework of the Laccave project, and permitted to design 4 adaptation strategies to climate change (conservative, innovative, nomadic, liberal) and to describe the paths leading to them (Aigrain et al. , 2017). In 2017, six participatory seminars were organized in the main French wine regions: Bordeaux / Cognac, Champagne, Burgundy, Languedoc, Rhône Valley and Alsace. During each of them, between 60 and 100 stakeholders of the industry were invited to discuss in small groups about the issues and consequences of each proposed strategy. Then, they were asked to identify the desirable or threatening nature of these strategies and to make proposals for actions that could promote or prevent their occurrence. All information collected was recorded in the form of verbatim (Aigrain et al., 2018).

Results ‐ From these participatory workshops, the majority favored the development of technical innovations in order to maintain the current location of French vineyards and the value associated with them, while questioning the limits to keep the specificity of each appellation. The positioning vis‐à‐vis the conservative strategy is variable and depends on the regions. The appearance of new viticultural zones is concerning and represents a point of vigilance for the participants. The treatment of these numerous contributions is currently fueling the construction, in France, of a national strategy to adapt the vine and wine sector to climate change

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Patrick AIGRAIN1, Benjamin BOIS8, Françoise BRUGIERE1, Eric DUCHENE7, Inaki GARCIA de CORTAZAR‐ATAURI6, Jacques GAUTIER2, Eric GIRAUD‐HERAUD5, Roy HAMMOND4, Hervé HANNIN3, Jean‐Marc TOUZARD4, Nathalie OLLAT5

(1) FranceAgriMer Montreuil – France
(2) INAO Montreuil – France
(3) Univ Montpellier, MOISA, Montpellier SupAgro/IHEV, Montpellier – France
(4) Univ Montpellier, Innovation, INRA, Montpellier – France
(5) EGFV, -Bordeaux Sciences Agro INRA Univ. Bordeaux, ISVV Bordeaux I– France
(6) Agroclim, INRA Avignon – France
(7) SVQV, INRA Colmar – France
(8) Université de Bourgogne Dijon – France Corresponding author

Contact the author

Keywords

Climate change, Vine and Wine industry, Adaptation, Foresight exercise, Participative approach

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Green Vineyards: skills development for wine industry personnel: responding to the challenges of climate change

A fair and sustainable society, with a modern, resource-efficient and competitive economy cannot be achieved without a workforce to support it.

PAIRING WINE AND STOPPER: AN OLD ISSUE WITH NEW ACHIEVEMENTS

The sensory characteristics of wine are a topic studied by several researchers over time, but it continues to be a current and challenging subject. These characteristics are fundamental for the consumer acceptability, which has increasingly aroused their interest to modulate them in line with current market trends and innovation demands. The wine physical-chemical and sensory properties depend on a wide set of factors: they begin to be designed in the vineyard and are later constructed during the various stages of winemaking. Afterwards, the wine is placed in bottles and stored or commercialized.

Physical-mechanical berry skin traits as powerful indicators of resistance to botrytis bunch rot

The ongoing climate change results in increasing mean air temperature, which is manifested by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased biotic infection pressure. Thus, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality. Since no resistances or candidate genes have yet been described for Botrytis bunch rot (BBR), physical-mechanical traits like berry size and thick, impermeable berry cuticles phenotyped with high-throughput sensors represent novel effective parameters to predict BBR.

Trace-level analysis of phosphonate in wine and must by ion chromatography with inductively coupled plasma mass spectrometry (IC-ICP-MS).

Phosphonic acid and especially potassium dihydrogen phosphonate are widely used to restrain the ubiquitous pressure of grapevine downy mildew in viticulture. Nevertheless, phosphonic acid and its derivatives have been banned in organic viticulture in October 2013, because they have been classified as plant protection products since then.

Co-design and evaluation of spatially explicit strategies of adaptation to climate change in a Mediterranean watershed

Climate change challenges differently wine growing systems, depending on their biophysical, sociological and economic features. Therefore, there is a need to locally design and evaluate adaptation strategies combining several technical options, and considering the local opportunities and constraints (e.g. water access, wine typicity). The case study took place in a typical and heterogeneous Mediterranean vineyard of 1,500 ha in the South of France. We developed a participatory modeling approach to (1) conceptualize local climate change issues and design spatially explicit adaptation strategies with stakeholders, (2) numerically evaluate their effects on phenology, yield and irrigation needs under the high-emissions climate change scenario RCP 8.5, and (3) collectively discuss simulation results. We organized five sets of workshops, with in-between modeling phases. A process-based model was developed that allowed to evaluate the effects of six technical options (late varieties, irrigation, water saving by reducing canopy size, adjusting cover cropping, reducing density, and shading) with various distributions in the watershed, as well as vineyard relocation. Overall, we co-designed three adaptation strategies. Delay harvest strategy with late varieties showed little effects on decreasing air temperature during ripening. Water constraint limitation strategy would compensate for production losses if disruptive adaptations (e.g. reduced density) were adopted, and more land got access to irrigation. Relocation strategy would foster high premium wine production in the constrained mountainous areas where grapevine is less impacted by climate change. This research shows that a spatial distribution of technical changes gives room for adaptation to climate change, and that the collaboration with local stakeholders is a key to the identification of relevant adaptation. Further research should explore the potential of adaptation strategies based on soil quality improvement and on water stress tolerant varieties.