WINE RACKING IN THE WINERY AND THE USE OF INERT GASES: CONTROL AND OPTIMIZATION OF THE PROCESS
Abstract
Atmospheric oxygen (O₂) generates oxidation in wines that affect their physicochemical and sensory evolution. The O₂ uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O₂ uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The aim was to study the uptake of O₂ during the racking of a model wine as a reference and to compare with purging the destination tank with different inert gases. In addition, inert gases were also used to protect the wine in the racking tank by blanketing the wine. Finally, a full-scale inerting study was carried out in a commercial winery during the racking of a white wine to evaluate the effectiveness of the use of different inert gases. Dissolved oxygen (DO) and Head Space Oxygen (HSO) was monitored in different points during the wine racking.
Purging an empty tank with different inert gases was effective being the CO₂:Ar (20:80) mixture clearly the most effective, requiring less gas volume to displace O₂. The opposite result was found with N₂ because it worked in dilution mode. Although from an economic viewpoint, the most recommendable gas was CO₂.
The level of protection of the racked wine and the headspace in the empty destination tank differed depending on the gas used and the thickness (% of the tank volume) of the blanket formed with each gas. Based on the results obtained, purging with 25% of the empty tank volume of each inert gas is recommended to protect racked wine in a good cost-benefit way. To keep the headspace of the racking tank inert, blanketing with 50% of tank volume of Ar, CO₂ or the mixture of both were sufficient. Applying different volumes of gas had little effect on the DO of the wine at the tank outlet.
The study of a white wine racking in a commercial winery demonstrated the greater efficacy of Ar versus N₂ in the purging of the destination tank, while for the hoses inerting, the differences between both gases were minor. In addition, Ar was able to maintain the wine at lower DO levels as well as to provide a higher level of HSO protection in the destination tank during the racking process.
The results obtained allow us to recommend the appropriate type and volume of inert gas to minimize O₂ uptake during wine racking.
DOI:
Issue: OENO Macrowine 2023
Type: Poster
Authors
Contact the author*
Keywords
Inert gases, racking wine, purging, blanketing, oxygen