terclim by ICS banner
IVES 9 IVES Conference Series 9 Influence of agrophotovoltaic on vine and must in a cool climate

Influence of agrophotovoltaic on vine and must in a cool climate

Abstract

The current energy crisis means that interest in agrophotovoltaics has increased significantly. The reason behind this is that the system aims to combine agricultural production with energy production. During the three-year period from 2020 to 2022, the effects of photovoltaic panels on the vine, the yield and the quality of the must were studied in Walenstadt in northern Switzerland, an area with a cool, humid climate. 65 Pinot noir vines were planted in the 160m2 study area. Because of the large edge effects, only 3 repetitions with 4 vines each could be created. A significantly lower leaf infestation by Plasmopara viticola was observed among the panels in each of the three years. However, in 2021 a significantly lower grape infestation was observed with an extremely high infestation pressure. In contrast, significantly higher powdery mildew leaf infestations were observed in 2020 and 2022, with infestations well below the economic threshold. During the three-year study period, the sugar content among the panels was significantly lower at around 0.9 to 1.8 Brix, and the total acidity was significantly higher between 1 and 1.3 g/l. These results indicate an approximate 1-week delay in ripening. Growth was optically stronger underneath the panels throughout the dry years 2020 and 2022, but only in the latter was it possible to measure a significantly higher pruning weight. The significantly lower value of the relative carbon isotope composition (Δ13C) in must sugars under the panels indicates greater water stress compared to the control, which can be attributed to reduced transpiration under the panels.
Conclusion: In the three years observed no significant negative impact of the photovoltaic panels could be determined, either on the yield or on the components of the must. The delay in ripening is usually a positive aspect, as is the reduced pressure from downy mildew. However, there is still a need for optimisation in construction so that unhindered mechanical cultivation is possible.

DOI:

Publication date: December 20, 2023

Issue: OENO Macrowine 2023

Type: Article

Authors

Peter Schumacher1

1 ZHAW Zurich University of Applied Sciences

Contact the author*

Keywords

Agrophotovoltaic, Plasmospara viticola, berry composition, water stress

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PROGRESS OF STUDIES OF LEES ORIGINATING FROM THE FIRST ALCOHOLIC FERMENTATION OF CHAMPAGNE WINES

Champagne wines are produced via a two-step process: the first is an initial alcoholic fermentation of grape must that produces a still base wine, followed by a second fermentation in bottle – the prise de mousse – that produces the effervescence. This appellation produces non-vintage sparkling wines composed of still base wines assembled from different vintages, varieties, and regions. These base wines, or “reserve wines,” are typically conserved on their fine lies and used to compensate for quality variance between vintages (1). Continuously blending small amounts of these reserve wines into newer ones also facilitates preserving the producer’s “house style.”

LARGE SURVEY OF THE CHEMICAL COMPOSITION OF WINES RESULTING OF THE PRESSING OF RED WINE MARC. FIRST RESULTS

In the Bordeaux vineyards, press red wine represents about 15% of the volume of wines. Valuing this large volume of press wine is necessary from an economic point of view, of course, but also because of their organoleptic contribution to the blend. Nevertheless, there is a lack of recent knowledge on the composition of press wines. This work aims to establish an initial assessment of their composition (aromatic and polyphenolic) and to set up hypothesis on to the links with their sensorial identity.

A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

Oenococcus oeni is the main lactic acid bacteria (LAB) species which conducts the malolactic fermentation (MLF) in wine. During MLF, O. oeni converts malic acid into lactic acid, which modulates wine aroma composition leading to better balanced organoleptic properties. O. oeni is a highly specialized species only detected in environments containing alcohol such as wine, cider or kombucha. Genome analysis of more than 240 strains showed that they form at least 4 main phylogenetic lineages and several sublineages, which are associated with different beverages or types of wines.

ASSESSMENT OF ‘DOLCETTO’ GRAPES AND WINES FROM DIFFERENT AREAS OF OVADA DOCG

Dolcetto (Vitis vinifera L.) is one of the traditionally cultivated varieties in Piedmont (north-east Italy). Dolcetto wines have long been associated with local consumption and they are little known internationally. In particular, the Ovada area (south-east Piedmont), even if it represents a small share of the regional PDO Dolcetto production, is one of the oldest and vocated territory, giving wine also suitable for aging. In this study, the basic composition and phenolic content of Dolcetto grapes for Ovada DOCG wines have been investigated in three different vintages (2020-2022), as well as the main aspects of the derived commercial and experimental wines (basic parameters, phenolics, volatile compounds, sensory properties).

TARTARIC STABILIZATION MAY AFFECT THE COLOR AND POLYPHENOLIC COMPOSITION OF TANNAT RED WINES FROM URUGUAY

Tartrate precipitation affects the properties of wines, due to the formation of crystals that cause turbidity, even after being bottled. The forced tartaric stabilization is carried out frequently for young wines, through various physicochemical procedures. The traditional treatment for tartaric stabilization is refrigeration, but it can have a negative effect on wine’s sensory properties, and particularly on the color of red wines. The aim of this study was to evaluate the effect of different tartaric stabilization options on the color and phenolic composition of Tannat red wines from Uruguay.