terclim by ICS banner
IVES 9 IVES Conference Series 9 ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

Abstract

Climate changes are impacting viticultural regions throughout the world with temperature increases being most prevalent.1 These changes will not only impact the regions capable of growing grapes, but also the grapes that can be grown.2 As temperatures rise the growing degree days increase and with it the sugar accumulation within the berries and subsequent alcohol levels in wine. Consequently, viticultural practices need to be examined to decrease the levels of sugars. Anti-transpirants have been used to some degree of success, however their benefits may be linked to the varietal and style of wine produced.3 With this in mind we undertook a study of anti-transpirant application to merlot grapes to determine its effectiveness for reducing alcohol in Rosé wines.

The trial was performed in a commercial vineyard in the Hawke’s Bay region of New Zealand. The vines were two cane pruned and the vineyard was managed under conventional practices. The trial was setup as a randomized block design with five vines per block. Anti-transpirant was applied using a backpack sprayer to upper portion of the canopy to the point of run off at véraison. The berries were then harvested by hand at 18 °Brix and wine making using a standardized wine making protocol at the research winery.

The harvest dates were delayed between the treated and untreated vines. The treated wines were found to have a higher pH, lower titratable acidity, and increased total phenolics. The aroma compound analysis resulted in several significant differences that were noted in the sensory evaluation. In both vintages the control wines were found to be influenced by green, vegetal, and earthy notes while the treated wines were found to be influenced by fruit aromas. These sensory attributes were confirmed by examining the aromatic compounds by PCA. This resulted in the controls being influenced by methoxypyrazines and alcohols and a few esters, compared to treated wines which were influenced by esters and terpenoids.

In conclusion, we were able to show that the application of anti-transpirant was able to dissociate the ripening process of Merlot grapes. Its application decreased sugar production but allowed for aromatic compound production. This demonstrates the potential effectiveness for anti-transpirants to control sugar in grape production to mitigate increased temperatures. These results indicate that further research is necessary to optimize the application timing of the anti-transpirant.

 

1. Van Leeuwen, C. D.-I., A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Rességuier, L.; Ollat, N. (2019). An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy, 9, 514
2. Parker, A. K., García de Cortázar-Atauri, I., Gény, L., Spring, J.-L., Destrac, A., Schultz, H., Molitor, D., Lacombe, T., Graça, A., Monamy, C., Stoll, M., Storchi, P., Trought, M. C. T., Hofmann, R. W., & van Leeuwen, C. (2020). Temperature-based grape-vine sugar ripeness modelling for a wide range of Vitis vinifera L. cultivars. Agricultural and Forest Meteorology, 285-286, 107902.
3. Di Vaio, C., Marallo, N., Di Lorenzo, R., & Pisciotta, A. (2019). Anti-Transpirant Effects on Vine Physiology, Berry and Wine Composition of cv. Aglianico (Vitis vinifera L.) Grown in South Italy. Agronomy, 9(5), 244.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Kenneth Olejar1, Petra King2, Carmo Vasconcelos3, Elise Montgomery4, Karen Ball5, Stewart Field6

1 Appalchian State University, Department of Chemistry and Fermentation Sciences, Boone, NC, USA
2 Easten Institute of Technology, Department of Viticulture and Wine, Taradale, New Zealand
3 Bragato Research Institute, Blenheim, New Zealand
4 New Zealand Institute of Skills and Technology, Department of Viticulture and Wine, Taradale, New Zealand
5 Easten Institute of Technology, Department of Viticulture and Wine, Taradale, New Zealand
6 New Zealand Institute of Skills and Technology, Department of Viticulture and Wine, Blenheim, New Zealand

Contact the author*

Keywords

dissociatedripenin, glow-alcohol wine, wine sensory, wine aroma

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ASSESSMENT OF ‘DOLCETTO’ GRAPES AND WINES FROM DIFFERENT AREAS OF OVADA DOCG

Dolcetto (Vitis vinifera L.) is one of the traditionally cultivated varieties in Piedmont (north-east Italy). Dolcetto wines have long been associated with local consumption and they are little known internationally. In particular, the Ovada area (south-east Piedmont), even if it represents a small share of the regional PDO Dolcetto production, is one of the oldest and vocated territory, giving wine also suitable for aging. In this study, the basic composition and phenolic content of Dolcetto grapes for Ovada DOCG wines have been investigated in three different vintages (2020-2022), as well as the main aspects of the derived commercial and experimental wines (basic parameters, phenolics, volatile compounds, sensory properties).

DETERMINATION OF MINERAL COMPOSITION IN CV. TERAN (VITIS VINIFERA L.) RED WINE AFFECTED BY PRE-FERMENTATIVE MASH COOLING, HEATING, SAIGNÉE TECHNIQUE AND PROLONGED POST-FERMENTATIVE MACERATIONS

This study aimed to determine mineral composition in red wine obtained from cv. Teran (Vitis vinifera L.), autochtonous Croatian grape variety. Six different vinification treatments, including the control treatment (7-day standard maceration), were performed to study the effects of: 48-hour pre-fermentative mash cooling (8 °C) followed by prolonged post-fermentative maceration of 13 days (C15), 28 days (C30), and saignée technique (juice runoff) proceeded with prolonged post-fermentative maceration of 13 days (CS15); and effect of 48-hour heating (50 °C) followed by prolonged post-fermentative maceration of 13 days (H15) and 28 days (H30) on macro- and microelements in wine.

Managing changes in taste: lessons from champagne in britain 1800-1914

This paper focuses on how taste in wine (and other foods) changes and the implications of this process
for producers and merchants.
It draws primarily on the changing taste of and taste for champagne in Britain in the 19th century. Between 1850 and 1880 champagne went from a dosage level of around 20% (20 grams sugar / litre) to 0%. Champagne became the ‘dinner wine of the elite – drunk with roast meat and savoury dishes.
Contemporaries accepted that while most people could distinguish the taste of good champagne from that of bad, very few could distinguish very good from good.

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2].

CHARACTERIZATION AND ANTIBACTERIAL ACTIVITY OF A POLYPHENOLIC EXTRACT OBTAINED BY GREEN SUPERCRITICAL CO₂ EXTRACTION FROM RED GRAPE POMACE

Upgrading wine industry solid wastes is considered as one of the main strategies to support the circular economy. Red grape pomaces constitute a rich source of polyphenols, which have been shown to possess antioxidant properties and to provide benefits for human and animal health. The objective of this work was to obtain and characterise polyphenolic extracts from red grape pomaces via green supercritical CO₂ extraction using ethanol as a co-solvent, and to evaluate their antibacterial activity against susceptible and multidrug-resistant Escherichia coli strains of animal intestinal origin.