terclim by ICS banner
IVES 9 IVES Conference Series 9 ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

Abstract

Climate changes are impacting viticultural regions throughout the world with temperature increases being most prevalent.1 These changes will not only impact the regions capable of growing grapes, but also the grapes that can be grown.2 As temperatures rise the growing degree days increase and with it the sugar accumulation within the berries and subsequent alcohol levels in wine. Consequently, viticultural practices need to be examined to decrease the levels of sugars. Anti-transpirants have been used to some degree of success, however their benefits may be linked to the varietal and style of wine produced.3 With this in mind we undertook a study of anti-transpirant application to merlot grapes to determine its effectiveness for reducing alcohol in Rosé wines.

The trial was performed in a commercial vineyard in the Hawke’s Bay region of New Zealand. The vines were two cane pruned and the vineyard was managed under conventional practices. The trial was setup as a randomized block design with five vines per block. Anti-transpirant was applied using a backpack sprayer to upper portion of the canopy to the point of run off at véraison. The berries were then harvested by hand at 18 °Brix and wine making using a standardized wine making protocol at the research winery.

The harvest dates were delayed between the treated and untreated vines. The treated wines were found to have a higher pH, lower titratable acidity, and increased total phenolics. The aroma compound analysis resulted in several significant differences that were noted in the sensory evaluation. In both vintages the control wines were found to be influenced by green, vegetal, and earthy notes while the treated wines were found to be influenced by fruit aromas. These sensory attributes were confirmed by examining the aromatic compounds by PCA. This resulted in the controls being influenced by methoxypyrazines and alcohols and a few esters, compared to treated wines which were influenced by esters and terpenoids.

In conclusion, we were able to show that the application of anti-transpirant was able to dissociate the ripening process of Merlot grapes. Its application decreased sugar production but allowed for aromatic compound production. This demonstrates the potential effectiveness for anti-transpirants to control sugar in grape production to mitigate increased temperatures. These results indicate that further research is necessary to optimize the application timing of the anti-transpirant.

 

1. Van Leeuwen, C. D.-I., A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Rességuier, L.; Ollat, N. (2019). An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy, 9, 514
2. Parker, A. K., García de Cortázar-Atauri, I., Gény, L., Spring, J.-L., Destrac, A., Schultz, H., Molitor, D., Lacombe, T., Graça, A., Monamy, C., Stoll, M., Storchi, P., Trought, M. C. T., Hofmann, R. W., & van Leeuwen, C. (2020). Temperature-based grape-vine sugar ripeness modelling for a wide range of Vitis vinifera L. cultivars. Agricultural and Forest Meteorology, 285-286, 107902.
3. Di Vaio, C., Marallo, N., Di Lorenzo, R., & Pisciotta, A. (2019). Anti-Transpirant Effects on Vine Physiology, Berry and Wine Composition of cv. Aglianico (Vitis vinifera L.) Grown in South Italy. Agronomy, 9(5), 244.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Kenneth Olejar1, Petra King2, Carmo Vasconcelos3, Elise Montgomery4, Karen Ball5, Stewart Field6

1 Appalchian State University, Department of Chemistry and Fermentation Sciences, Boone, NC, USA
2 Easten Institute of Technology, Department of Viticulture and Wine, Taradale, New Zealand
3 Bragato Research Institute, Blenheim, New Zealand
4 New Zealand Institute of Skills and Technology, Department of Viticulture and Wine, Taradale, New Zealand
5 Easten Institute of Technology, Department of Viticulture and Wine, Taradale, New Zealand
6 New Zealand Institute of Skills and Technology, Department of Viticulture and Wine, Blenheim, New Zealand

Contact the author*

Keywords

dissociatedripenin, glow-alcohol wine, wine sensory, wine aroma

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

DO MICROPLASTICS IN VINEYARD SOIL AFFECT THE BIOAVAILABILITY OF VINE NUTRITION?

Microplastics can alter physicochemical and biogeochemical processes in the soil, but whether these changes have further effects on soil fertility, and if so, whether these effects vary depending on the type of soil in the vineyard and the type of plastic used in the vineyard. Knowing what types of plastics are currently used in vineyards in Slovenian viticultural regions as strings to tie vines to the stake, the aim of our study was to assess the effects of microplastic particles from polypropylene (PP) and polyvinyl chloride (PVC) on the availability of macro (potassium (K), Potassium (K), calcium (Ca), magnesium (Mg) and phosphate (P)) and micronutrients (iron (Fe), copper (Cu), manganese (Mn) and zinc (Zn)) in two vineyard soils contrasting in pH and mineralogy. For this purpose, a short-term soil incubation experiment (120 days) was carried out in which the soil samples were enriched with micro-PP and micro-PVC particles. After the incubation period, macro- and micronutrient availability were measured.

EFFECTS OF HYDROXYTYROSOL ON THE CHEMICAL PROFILE AND SENSORY ATTRIBUTES OF A RED TUSCAN WINE

The chemical profile and sensory attributes were studied in Borrigiano IGT Toscana wine (Italy), a blend of Sangiovese 85% and Cabernet Sauvignon 15% grapes harvested in September 2020, where 2-(3,4-dihydroxyphenyl)ethanol (hydroxytyrosol, HT, [1]) was added to a 750-ml wine bottle in 3 different amounts (30, 60, 120 mg) and compared with the control (no HT addition). The study aimed to evaluate whether Polyphenol-HT1®, a high purity HT (>99%) produced by Nova Mentis using biotechnology, could be used as a supplement to sulfites and how it would impact the sensory and chemical profile of this wine [2]. Each sample was prepared in triplicate.

IMPACT OF CLIMATIC CONDITIONS ON THE SEASONING QUALITY OF OAK WOOD FOR OENOLOGICAL USE (QUERCUS PETRAEA)

For coopers, seasoning and toasting are considered crucial steps in barrel making during which the oak wood develops specific organoleptic properties. Seasoning, carried out in the open air, allows reducing the moisture content of the staves to between 14 and 18% (compared to 70 to 90% after splitting) while modulating the intrinsic composition of the oak wood. Toasting consists of applying different degrees of heat to a barrel for a specific period of time. As the temperature increases, oak wood produces a wide range of chemical compounds through thermal degradation of its intrinsic composition.

EFFECT OF OXIDATION ON LOW MOLECULAR WEIGHT PHENOLIC FRACTION, SALIVARY PROTEINS PRECIPITATION AND ASTRINGENCY SUBQUALITIES OF RED WINES

Changes in the low molecular weight phenolic fraction, obtained by liquid-liquid microextraction technique, were studied after controlled oxidation of two typologies of Sangiovese wines (Brunello di Montalcino and Chianti Classico) belonging to two vintages (2017 and 2018). The fractions were characterized by LC-MS and quantified by HPLC. The most abundant extracted compounds were the phenolic acids. The effect of oxidation, vintage, and wine typology was stated by a three-ways ANOVA. Gallic and syringic acids significantly increased after oxidation while (–)-epicatechin decreased the most.

FLAVONOID POTENTIAL OF MINORITY RED GRAPE VARIETIES

The alteration in the rainfall pattern and the increase in the temperatures associated to global climate change are already affecting wine production in many viticultural regions all around the world (1). In fact, grapes are nowadays ripening earlier from a technological point of view than in the past, but they are not necessarily mature from a phenolic point of view. Consequently, the wines made from these grapes can be unbalanced or show high alcohol content. Dramatic shifts in viticultural areas are currently being projected for the future (2).