terclim by ICS banner
IVES 9 IVES Conference Series 9 ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

Abstract

Climate changes are impacting viticultural regions throughout the world with temperature increases being most prevalent.1 These changes will not only impact the regions capable of growing grapes, but also the grapes that can be grown.2 As temperatures rise the growing degree days increase and with it the sugar accumulation within the berries and subsequent alcohol levels in wine. Consequently, viticultural practices need to be examined to decrease the levels of sugars. Anti-transpirants have been used to some degree of success, however their benefits may be linked to the varietal and style of wine produced.3 With this in mind we undertook a study of anti-transpirant application to merlot grapes to determine its effectiveness for reducing alcohol in Rosé wines.

The trial was performed in a commercial vineyard in the Hawke’s Bay region of New Zealand. The vines were two cane pruned and the vineyard was managed under conventional practices. The trial was setup as a randomized block design with five vines per block. Anti-transpirant was applied using a backpack sprayer to upper portion of the canopy to the point of run off at véraison. The berries were then harvested by hand at 18 °Brix and wine making using a standardized wine making protocol at the research winery.

The harvest dates were delayed between the treated and untreated vines. The treated wines were found to have a higher pH, lower titratable acidity, and increased total phenolics. The aroma compound analysis resulted in several significant differences that were noted in the sensory evaluation. In both vintages the control wines were found to be influenced by green, vegetal, and earthy notes while the treated wines were found to be influenced by fruit aromas. These sensory attributes were confirmed by examining the aromatic compounds by PCA. This resulted in the controls being influenced by methoxypyrazines and alcohols and a few esters, compared to treated wines which were influenced by esters and terpenoids.

In conclusion, we were able to show that the application of anti-transpirant was able to dissociate the ripening process of Merlot grapes. Its application decreased sugar production but allowed for aromatic compound production. This demonstrates the potential effectiveness for anti-transpirants to control sugar in grape production to mitigate increased temperatures. These results indicate that further research is necessary to optimize the application timing of the anti-transpirant.

 

1. Van Leeuwen, C. D.-I., A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Rességuier, L.; Ollat, N. (2019). An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy, 9, 514
2. Parker, A. K., García de Cortázar-Atauri, I., Gény, L., Spring, J.-L., Destrac, A., Schultz, H., Molitor, D., Lacombe, T., Graça, A., Monamy, C., Stoll, M., Storchi, P., Trought, M. C. T., Hofmann, R. W., & van Leeuwen, C. (2020). Temperature-based grape-vine sugar ripeness modelling for a wide range of Vitis vinifera L. cultivars. Agricultural and Forest Meteorology, 285-286, 107902.
3. Di Vaio, C., Marallo, N., Di Lorenzo, R., & Pisciotta, A. (2019). Anti-Transpirant Effects on Vine Physiology, Berry and Wine Composition of cv. Aglianico (Vitis vinifera L.) Grown in South Italy. Agronomy, 9(5), 244.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Kenneth Olejar1, Petra King2, Carmo Vasconcelos3, Elise Montgomery4, Karen Ball5, Stewart Field6

1 Appalchian State University, Department of Chemistry and Fermentation Sciences, Boone, NC, USA
2 Easten Institute of Technology, Department of Viticulture and Wine, Taradale, New Zealand
3 Bragato Research Institute, Blenheim, New Zealand
4 New Zealand Institute of Skills and Technology, Department of Viticulture and Wine, Taradale, New Zealand
5 Easten Institute of Technology, Department of Viticulture and Wine, Taradale, New Zealand
6 New Zealand Institute of Skills and Technology, Department of Viticulture and Wine, Blenheim, New Zealand

Contact the author*

Keywords

dissociatedripenin, glow-alcohol wine, wine sensory, wine aroma

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

THE EFFECT OF PRE-FERMENTATIVE GLYPHOSATE ADDITION ON THE METABOLITE PROFILE OF WINE

The synthetic herbicide glyphosate has been used extensively in viticulture over many decades to combat weeds. Despite this, the possible influence of residual glyphosate on both the alcoholic fermentation of grape juice and the subsequent metabolite profile of wines has not been investigated. In this study, Pinot noir juice supplemented with different concentrations of glyphosate (0 µg L-1, 10 µg L-1 and 1000 µg L-1) was fermented with commercial Saccharomyces cerevisiae yeast strains. Using a combination of analytical methods, 80 metabolites were quantified in the resulting wines.

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2
One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.

METHYL SALICYLATE: A TRENDY COMPOUND MARKER OF ZELEN, A UNIQUE SLOVENIAN VARIETY

The wine market interest for autochthonous varieties, particularly from less known wine regions, has significantly raised in the past few years. In that context, Slovenia, a small country from central Europe with a long winemaking tradition, is getting more and more attention, particularly through its range of unique regional varieties. Among them, Zelen, meaning “green” in Slovene, can only be found in the Vipava valley region, located on the western side of the country, near the border with Italy. When they are young, Zelen wines display very singular aromas reminiscent of rosemary, sage and white fruit. Despite its uniqueness, Zelen wine aromatic typicality is poorly documented in the literature.

INSIGHT THE IMPACT OF GRAPE PRESSING ON MUST COMPOSITION

The pre-fermentative steps play a relevant role for the characteristics of white wine [1]. In particular, the grape pressing can affect the chemical composition and sensory profile and its optimized management leads to the desired extraction of aromas and their precursors, and phenols resulting in a balanced wine [2-4]. These aspects are important especially for must addressed to the sparkling wine as appropriate extraction of phenols is expected being dependent to grape composition, as well.

OPTIMIZATION OF EXTRACTION AND DEVELOPMENT OF AN LC-HRMS METHOD TO QUANTIFY GLUTATHIONE IN WHITE WINE LEES AND YEAST DERIVATIVES

Glutathione is a natural tripeptide composed of l-glutamate, l-cysteine and glycine, found in various foods and beverages. In particular, glutathione can be found in its reduced (GSH) or oxidized form (GSSG) in must, wine or yeasts¹. Numerous studies have highlighted the importance of GSH in wine quality and aging potential². During winemaking, especially during aging on lees, GSH helps prevent the harmful effects of oxidation on the aroma of the wine³. Nevertheless, the amounts of GSH/GSSG present in wine lees are often unknown and the choice of operating conditions (quantity of lees and aging time) remains empirical.