GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Using remote sensing to quantify the temporal and spatial effects of extreme weather events in vineyards

Using remote sensing to quantify the temporal and spatial effects of extreme weather events in vineyards

Abstract

Introduction -The increasing frequency of extreme weather events (EWE) represents a severe threat to viticulture. The accurate and early assessment of plant stress condition offers substantial advantages to minimize the effects of EWE. Vegetation indices obtained by remote sensing could provide useful information for early detection and quantification of abiotic stresses.

Methods ‐ The analysis assessed several vineyards in Italy and Australia recently affected by EWE (2016‐ 18). The spatio‐temporal pattern of EWE (heatwaves, late frost) and their effects on vineyards were assessed by analysing the evolution of specific vegetation indices calculated using satellite imagery. The magnitude of indices variations was used to quantify the extent of canopy damage. Temporal variations were used to calculate the time necessary for complete recovery of the plants.
Results ‐ Different spectral bands (NIR, red edge, SWIR, green and red) and several vegetation indices provided information to quantify the extension of the areas damaged by EWE. The comparison of the indices values and single bands in affected and unaffected areas allowed the estimation of the temporal pattern in different climate conditions of the studied areas. Specifically, it was possible to quantify the recovery time, needed by plants to return to an acceptable vigour after damages induced by frost. The results provided a basis for better understanding and management of EWE effects.

Discussion ‐ The implementation of remote sensing techniques is widely used to monitor water status and spatial variability of the vineyards. By contrast, there is less application of these tools for monitoring effects and damages due to EWE. The results of this study demonstrate that the analysis of vegetation indices computed from remote sensing imagery can provide factual information of the spatio‐temporal pattern of vineyards affected by EWE. The methodology established could be used to support decision‐ making towards calamity alleviation, insurance services and recovery managemen

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Alessia COGATO1, Massimiliano DE ANTONI MIGLIORATI2, Vinay PAGAY3, Francesco MARINELLO1, Franco MEGGIO4, Peter GRACE2

(1) University of Padova, TESAF, Viale dell’Università 16, 35020 Padova, Italy
(2)Queensland University of Technology QUT,2 George St, Brisbane City QLD 4000, Australia
(3)The University of Adelaide, Adelaide, South Australia 5005, Australia
(4) University of Padova, DAFNAE, Viale dell’Università 16, 35020 Padova, Italy

Contact the author

Keywords

Grapevine,Extreme weather events, Climate change, Remote sensing, Spatio‐temporal pattern

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Technical innovation and quality control of wine production in China

Recent decades have witnessed an evolving trend of diverse product types, improved quality, and green, low-carbon, and sustainable development in chinese wine market. A quality evaluation system, namely, with a dual orientation of “flavor compounds” and “sensory evaluation” is used as guidance for winemaking innovation in China.

Dynamics of soil and canopy temperature: a conceptual approach for Alentejo vineyards

Climate change imposes increasing restrictions and risks to Mediterranean viticulture. Extreme heat and drought stress events are becoming more frequent which puts in risk sustainability of Mediterranean viticulture. Moreover row crops e.g. grapevine for wine, are increasingly prone to the impact of more intense/longer exposure time to heat stress. The amplified effects of soil surface energy reflectance and conductance on soil-atmosphere heat fluxes can be harmful for leaf and berry physiology.

Fungal resident flora of a new winery: colonization, dynamics and potential persistence capacities

Through the years, extensive studies have been conducted on fungal biodiversity during the winemaking process: from the vineyard until aging.

Variabilité des critères de délimitation dans les AOC françaises

La délimitation de l’aire de production d’une appellation d’origine contrôlée française est une opération essentielle. Le décret-loi du 30 juillet 1935, qui a créé le système des appellations d’origine contrôlées

Using combinations of recombinant pectinases to elucidate the deconstruction of the polysaccharide‐rich grape cell wall during winemaking

The effectiveness of enzyme-mediated maceration processes in red winemaking relies on a clear picture of the target (berry cell wall structure) to achieve the optimum combination of specific enzymes to be used. However, we lack the information on both essential factors of the reaction (i.e. specific activities in commercial enzyme preparation and the cell wall structure of berry tissue). In this study, the different combinations of pure recombinant enzymes and the recently validated high throughput cell wall profiling tools were applied to extend our knowledge on the grape berry cell wall polymeric deconstruction during the winemaking following a combinatorial enzyme treatment design.