terclim by ICS banner
IVES 9 IVES Conference Series 9 PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Abstract

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2

One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.

Mass spectrometry imaging is an innovative analytical technique for the spatial mapping of molecules within a sample. It has the ability to provide valuable insights into the molecular processes underlying the interaction between a plant and a pathogen. Despite its advantages, to date, the studies of the application of MALDI-MSI to plants is not extensive, even more the ones investigating grapevine compounds.3–5

In a first part, the presentation will focus on the principle and characteristic data provided by this methodology involving a localized ion source and a high-resolution mass spectrometer. The following part will be dedicated to our work on the application of this methodology to investigate phytoalexin accumulation and distribution in leaf tissues of Vitis vinifera cv Chardonnay, infected with Botrytis cinerea, the causal agent for gray mold. We specifically investigate the accumulation and spatial distribution of resveratrol and its derivative oligomers through a time course infection using matrix-assisted laser desorption ionization – mass spectrometry imaging (MALDI-MSI). Our results show that production of stilbene phytoalexins is rapidely activated by the presence of the pathogen, with a high molecular diversity as evidenced by the detection of various oligomeric forms. Moreover, the specific behavior of these compounds towards the propagation of the infection by the pathogen is clearly highlighted at the micron scale.

 

1. Jeandet, P.; Delaunois, B.; Conreux, A.; Donnez, D.; Nuzzo, V.; Cordelier, S.; Clément, C.; Courot, E. Biosynthesis, Metabolism, Molecular Engineering, and Biological Functions of Stilbene Phytoalexins in Plants. BioFactors 2010, 36 (5), 331–341.
2. Jeandet, P.; Uddin, M. S.; Clément, C.; Aziz, A.; Jacquard, C.; Khan, H.; Shah, M. A.; Barka, E. A.; Koffas, M.; Nabavi, S. M.; Sobarzo-Sánchez, E.; Renault, J.-H. Production of High Molecular-Ordered Stilbene Oligomers for the Study of Their Biological Activity: Total Synthesis, Bio-Catalyzed Synthesis and Production by Plant Systems. Nat. Prod. Rep. 2023.
3. Becker, L.; Carré, V.; Poutaraud, A.; Merdinoglu, D.; Chaimbault, P. MALDI Mass Spectrometry Imaging for the Simultaneous Location of Resveratrol, Pterostilbene and Viniferins on Grapevine Leaves. Molecules 2014, 19 (7), 10587–10600.
4. Maia, M.; McCann, A.; Malherbe, C.; Far, J.; Cunha, J.; Eiras-Dias, J.; Cordeiro, C.; Eppe, G.; Quinton, L.; Figueiredo, A.; De Pauw, E.; Sousa Silva, M. Grapevine Leaf MALDI-MS Imaging Reveals the Localisation of a Putatively Identified Sucrose Metabolite Associated to Plasmopara Viticola Development. Frontiers in Plant Science 2022, 13.
5. Maia, M.; Carré, V.; Aziz, A.; Jeandet, P. Molecular Localization of Phytoalexins at the Micron Scale: Toward a Better Understanding of Plant-Phytoalexin-Pathogen Dynamics. J. Agric. Food Chem. 2022.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Vincent Carré1, Maia Marisa1, Aziz Aziz2, Jeandet Philippe2

1. LCP-A2MC, Université de Lorraine, Metz, France
2. RIBP, USC INRAE 1488, Université de Reims Champagne-Ardenne, Reims, France

Contact the author*

Keywords

Mass Spectrometry, Imaging Metabolomics, Plant-Pathogen Interaction, Stilbene phytoalexins

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the glass headspace above the wine surface. Most of wines being complex water/ethanol mixtures (with typically 10-15 % ethanol by volume), gaseous ethanol is therefore undoubtedly the most abundant VOC in the glass headspace [1]. Yet, gaseous ethanol is known to have a multimodal influence on wine’s perception [2]. Of particular importance to flavor perception is the effect of ethanol on the release of aroma compounds into the headspace of the beverage [1].

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.

FERMENTATION POTENTIAL OF INDIGENOUS NON-SACCHAROMYCES YEASTS ISOLATED FROM MARAŠTINA GRAPES OF CROATIAN VINEYARDS

The interest in indigenous non-Saccharomyces yeast for use in wine production has increased in recent years because they contribute to the complex character of the wine. The aim of this work was to investigate the fermentation products of ten indigenous strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes, belonging to Hypopichia pseudoburtonii, Metschnikowia pulcherrima, Metschnikowia sinensis, Metschnikowia chrysoperlae, Lachancea thermotolerans, Pichia kluyveri, Hanseniaspora uvarum, Hanseniaspora guillermondii, Hanseniaspora pseudoguillermondii, and Starmerella apicola species, and compare it with commercial non-Saccharomyces and Saccharomyces strains.

YEAST-PRODUCED VOLATILES IN GRAPE BASED SYSTEM MODEL ACTING AS ANTIFUNGAL BIOAGENTS AGAINST PHYTOPATHOGEN BOTRYTIS CINEREA

Botrytis cinerea Pers., the causal agent of grey mould disease, is responsible for substantial economic losses, as it causes reduction of grape and wine quality and quantity. Exploitation of antagonistic yeasts is a promising strategy for controlling grey mould incidence and limiting the usage of synthetic fungicides. In our previous studies, 119 different indigenous yeasts were screened for putative multidimensional modes of action against filamentous fungus B. cinerea [1]. The most promissing biocontrol yeast was Pichia guilliermondii ZIM624, which exhibited several anatagonistic traits (production of cell wall degrading enzymes, chitinase and β-1,3-glucanase; demonstration of in vitro inhibitory effect on B. cinerea mycelia radial growth; production of antifungal volatiles, assimilation of a broad diversity of carbon sources, contributing to its competitivnes in inhabiting grapes in nature).

ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

The chemical composition of grape berries at harvest is one of the key aspects influencing wine quality and depends mainly on the ripeness level of grapes. Climate change affects this trait, unbalancing technological and phenolic ripeness, and this further raises the need for a fast determination of the grape maturity in order to quickly and efficiently determine the optimal time for harvesting. To this end, the characterization of variety-specific ripening curves and the development of new and rapid methods for determining grape ripeness are of key importance.