terclim by ICS banner
IVES 9 IVES Conference Series 9 PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Abstract

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2

One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.

Mass spectrometry imaging is an innovative analytical technique for the spatial mapping of molecules within a sample. It has the ability to provide valuable insights into the molecular processes underlying the interaction between a plant and a pathogen. Despite its advantages, to date, the studies of the application of MALDI-MSI to plants is not extensive, even more the ones investigating grapevine compounds.3–5

In a first part, the presentation will focus on the principle and characteristic data provided by this methodology involving a localized ion source and a high-resolution mass spectrometer. The following part will be dedicated to our work on the application of this methodology to investigate phytoalexin accumulation and distribution in leaf tissues of Vitis vinifera cv Chardonnay, infected with Botrytis cinerea, the causal agent for gray mold. We specifically investigate the accumulation and spatial distribution of resveratrol and its derivative oligomers through a time course infection using matrix-assisted laser desorption ionization – mass spectrometry imaging (MALDI-MSI). Our results show that production of stilbene phytoalexins is rapidely activated by the presence of the pathogen, with a high molecular diversity as evidenced by the detection of various oligomeric forms. Moreover, the specific behavior of these compounds towards the propagation of the infection by the pathogen is clearly highlighted at the micron scale.

 

1. Jeandet, P.; Delaunois, B.; Conreux, A.; Donnez, D.; Nuzzo, V.; Cordelier, S.; Clément, C.; Courot, E. Biosynthesis, Metabolism, Molecular Engineering, and Biological Functions of Stilbene Phytoalexins in Plants. BioFactors 2010, 36 (5), 331–341.
2. Jeandet, P.; Uddin, M. S.; Clément, C.; Aziz, A.; Jacquard, C.; Khan, H.; Shah, M. A.; Barka, E. A.; Koffas, M.; Nabavi, S. M.; Sobarzo-Sánchez, E.; Renault, J.-H. Production of High Molecular-Ordered Stilbene Oligomers for the Study of Their Biological Activity: Total Synthesis, Bio-Catalyzed Synthesis and Production by Plant Systems. Nat. Prod. Rep. 2023.
3. Becker, L.; Carré, V.; Poutaraud, A.; Merdinoglu, D.; Chaimbault, P. MALDI Mass Spectrometry Imaging for the Simultaneous Location of Resveratrol, Pterostilbene and Viniferins on Grapevine Leaves. Molecules 2014, 19 (7), 10587–10600.
4. Maia, M.; McCann, A.; Malherbe, C.; Far, J.; Cunha, J.; Eiras-Dias, J.; Cordeiro, C.; Eppe, G.; Quinton, L.; Figueiredo, A.; De Pauw, E.; Sousa Silva, M. Grapevine Leaf MALDI-MS Imaging Reveals the Localisation of a Putatively Identified Sucrose Metabolite Associated to Plasmopara Viticola Development. Frontiers in Plant Science 2022, 13.
5. Maia, M.; Carré, V.; Aziz, A.; Jeandet, P. Molecular Localization of Phytoalexins at the Micron Scale: Toward a Better Understanding of Plant-Phytoalexin-Pathogen Dynamics. J. Agric. Food Chem. 2022.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Vincent Carré1, Maia Marisa1, Aziz Aziz2, Jeandet Philippe2

1. LCP-A2MC, Université de Lorraine, Metz, France
2. RIBP, USC INRAE 1488, Université de Reims Champagne-Ardenne, Reims, France

Contact the author*

Keywords

Mass Spectrometry, Imaging Metabolomics, Plant-Pathogen Interaction, Stilbene phytoalexins

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

WINE RACKING IN THE WINERY AND THE USE OF INERT GASES: CONTROL AND OPTIMIZATION OF THE PROCESS

Atmospheric oxygen (O₂) generates oxidation in wines that affect their physicochemical and sensory evolution. The O₂ uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O₂ uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The aim was to study the uptake of O₂ during the racking of a model wine as a reference and to compare with purging the destination tank with different inert gases.

MOVING FROM SULFITES TO BIOPROTECTION: WHICH IMPACT ON CHARDONNAY WINE?

Over the last few years, several tools have been developed to reduce the quantity of sulfites used during winemaking, including bioprotection. Although its effectiveness in preventing the development of spoilage microorganisms has been proven, few data are available on the impact of sulfite substitution by bioprotection on the final product. The objective of this study was therefore to characterize Chardonnay wines with the addition of sulfite or bioprotection in the pre-fermentation stage. The effects of both treatments on resulting matrices was evaluated at several scales: analysis of classical oenological parameters, antioxidant capacity, phenolic compounds, non-volatile metabolome and sensory profile.

ASSESSMENT OF ‘DOLCETTO’ GRAPES AND WINES FROM DIFFERENT AREAS OF OVADA DOCG

Dolcetto (Vitis vinifera L.) is one of the traditionally cultivated varieties in Piedmont (north-east Italy). Dolcetto wines have long been associated with local consumption and they are little known internationally. In particular, the Ovada area (south-east Piedmont), even if it represents a small share of the regional PDO Dolcetto production, is one of the oldest and vocated territory, giving wine also suitable for aging. In this study, the basic composition and phenolic content of Dolcetto grapes for Ovada DOCG wines have been investigated in three different vintages (2020-2022), as well as the main aspects of the derived commercial and experimental wines (basic parameters, phenolics, volatile compounds, sensory properties).

HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

Phenolic compounds play a central role in sensory characteristics of wine, such as colour, mouthfeel, flavour and determine its shelf life. Furthermore, the major non-enzymatic wine oxidation process is due to the catalytic oxidation of phenols in quinones. Due their importance, during the years have been developed different analytical methods to monitor the concentration of phenols in wine, such as Folin-Ciocalteu method, spectrophotometric techniques and HPLC. These methods can also be used to follow some oxidation-related chemical transformations.

METHYL SALICYLATE, A COMPOUND INVOLVED IN BORDEAUX RED WINES PRODUCED WITHOUT SULFITES ADDITION

Sulfur dioxide (SO₂) is the most commonly used additive during winemaking to protect wine from oxidation and from microorganisms. Thus, since the 18th century, SO₂ was almost systematically present in wines. Recently, wines produced without any addition of SO₂ during all the winemaking process including bottling became more and more popular for consumers. A recent study dedicated to sensory characterization of Bordeaux red wines produced without added SO₂, revealed that such wines were perceived differently from similar wines produced with using SO₂ and were characterized by specific fruity aromas and coolness1,2.