terclim by ICS banner
IVES 9 IVES Conference Series 9 PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Abstract

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2

One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.

Mass spectrometry imaging is an innovative analytical technique for the spatial mapping of molecules within a sample. It has the ability to provide valuable insights into the molecular processes underlying the interaction between a plant and a pathogen. Despite its advantages, to date, the studies of the application of MALDI-MSI to plants is not extensive, even more the ones investigating grapevine compounds.3–5

In a first part, the presentation will focus on the principle and characteristic data provided by this methodology involving a localized ion source and a high-resolution mass spectrometer. The following part will be dedicated to our work on the application of this methodology to investigate phytoalexin accumulation and distribution in leaf tissues of Vitis vinifera cv Chardonnay, infected with Botrytis cinerea, the causal agent for gray mold. We specifically investigate the accumulation and spatial distribution of resveratrol and its derivative oligomers through a time course infection using matrix-assisted laser desorption ionization – mass spectrometry imaging (MALDI-MSI). Our results show that production of stilbene phytoalexins is rapidely activated by the presence of the pathogen, with a high molecular diversity as evidenced by the detection of various oligomeric forms. Moreover, the specific behavior of these compounds towards the propagation of the infection by the pathogen is clearly highlighted at the micron scale.

 

1. Jeandet, P.; Delaunois, B.; Conreux, A.; Donnez, D.; Nuzzo, V.; Cordelier, S.; Clément, C.; Courot, E. Biosynthesis, Metabolism, Molecular Engineering, and Biological Functions of Stilbene Phytoalexins in Plants. BioFactors 2010, 36 (5), 331–341.
2. Jeandet, P.; Uddin, M. S.; Clément, C.; Aziz, A.; Jacquard, C.; Khan, H.; Shah, M. A.; Barka, E. A.; Koffas, M.; Nabavi, S. M.; Sobarzo-Sánchez, E.; Renault, J.-H. Production of High Molecular-Ordered Stilbene Oligomers for the Study of Their Biological Activity: Total Synthesis, Bio-Catalyzed Synthesis and Production by Plant Systems. Nat. Prod. Rep. 2023.
3. Becker, L.; Carré, V.; Poutaraud, A.; Merdinoglu, D.; Chaimbault, P. MALDI Mass Spectrometry Imaging for the Simultaneous Location of Resveratrol, Pterostilbene and Viniferins on Grapevine Leaves. Molecules 2014, 19 (7), 10587–10600.
4. Maia, M.; McCann, A.; Malherbe, C.; Far, J.; Cunha, J.; Eiras-Dias, J.; Cordeiro, C.; Eppe, G.; Quinton, L.; Figueiredo, A.; De Pauw, E.; Sousa Silva, M. Grapevine Leaf MALDI-MS Imaging Reveals the Localisation of a Putatively Identified Sucrose Metabolite Associated to Plasmopara Viticola Development. Frontiers in Plant Science 2022, 13.
5. Maia, M.; Carré, V.; Aziz, A.; Jeandet, P. Molecular Localization of Phytoalexins at the Micron Scale: Toward a Better Understanding of Plant-Phytoalexin-Pathogen Dynamics. J. Agric. Food Chem. 2022.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Vincent Carré1, Maia Marisa1, Aziz Aziz2, Jeandet Philippe2

1. LCP-A2MC, Université de Lorraine, Metz, France
2. RIBP, USC INRAE 1488, Université de Reims Champagne-Ardenne, Reims, France

Contact the author*

Keywords

Mass Spectrometry, Imaging Metabolomics, Plant-Pathogen Interaction, Stilbene phytoalexins

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECT OF FERMENTATION TEMPERATURE GRADIENT AND SKIN CONTACT ON ESTER AND THIOL PRODUCTION AND TROPICAL FRUIT PERCEPTION IN CHARDONNAY WINES

Wines with tropical fruit aromas have become increasingly more available1,2. With increased availability of different wine styles, it has become important to understand the compounds that cause the fruity aromas in wine. Previous work using micro fermentations showed that fermentation temperature gradients and time on skins resulted in an increase in thiol and ester compounds post fermentation and these compounds are known to cause tropical fruit aroma in wines³. This work aimed to scale up these fermentations/operations to determine if the desired aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

INFLUENCE OF THE THICKNESS OF OAK ALTERNATIVES ON THE COMPOSITION AND QUALITY OF RED WINES

Aging red wines in oak barrels is an expensive and laborious process that can only be applied to wines with a certain added value. For this reason, the use of oak alternatives coupled with micro-oxygenation has progressively increased over recent years, because it can reproduce the processes taking place in the barrels more economically and quickly [1]. Several studies have explored how oak alternatives [2-5] can contribute to wine composition and quality but little is known about the influence of their thickness.

YEAST-PRODUCED VOLATILES IN GRAPE BASED SYSTEM MODEL ACTING AS ANTIFUNGAL BIOAGENTS AGAINST PHYTOPATHOGEN BOTRYTIS CINEREA

Botrytis cinerea Pers., the causal agent of grey mould disease, is responsible for substantial economic losses, as it causes reduction of grape and wine quality and quantity. Exploitation of antagonistic yeasts is a promising strategy for controlling grey mould incidence and limiting the usage of synthetic fungicides. In our previous studies, 119 different indigenous yeasts were screened for putative multidimensional modes of action against filamentous fungus B. cinerea [1]. The most promissing biocontrol yeast was Pichia guilliermondii ZIM624, which exhibited several anatagonistic traits (production of cell wall degrading enzymes, chitinase and β-1,3-glucanase; demonstration of in vitro inhibitory effect on B. cinerea mycelia radial growth; production of antifungal volatiles, assimilation of a broad diversity of carbon sources, contributing to its competitivnes in inhabiting grapes in nature).

EVOLUTION OF CHEMICAL AND SENSORIAL PROFILE OF WINES ELABORATED WITH THEIR OWN TOASTED VINE-SHOOTS AND MICRO-OXYGENATION

The positive contribution of toasted vine-shoots (SEGs, Shoot from vines – Enological – Granule) used in winemaking to the chemical and sensory profile of wines has been widely proven. However, the combination of this new enological tool with other winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far. It is known that micro-oxygenation is used in wineries to stabilizes color, improves structure or combining with oak alternatives products to achieve a more effective aroma integration of wines. For that, its implementation in combination with SEGs could result in differentiated wines.

Molecular approaches for understanding and modulating wine taste

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol
(tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and
bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.