terclim by ICS banner
IVES 9 IVES Conference Series 9 PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Abstract

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2

One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.

Mass spectrometry imaging is an innovative analytical technique for the spatial mapping of molecules within a sample. It has the ability to provide valuable insights into the molecular processes underlying the interaction between a plant and a pathogen. Despite its advantages, to date, the studies of the application of MALDI-MSI to plants is not extensive, even more the ones investigating grapevine compounds.3–5

In a first part, the presentation will focus on the principle and characteristic data provided by this methodology involving a localized ion source and a high-resolution mass spectrometer. The following part will be dedicated to our work on the application of this methodology to investigate phytoalexin accumulation and distribution in leaf tissues of Vitis vinifera cv Chardonnay, infected with Botrytis cinerea, the causal agent for gray mold. We specifically investigate the accumulation and spatial distribution of resveratrol and its derivative oligomers through a time course infection using matrix-assisted laser desorption ionization – mass spectrometry imaging (MALDI-MSI). Our results show that production of stilbene phytoalexins is rapidely activated by the presence of the pathogen, with a high molecular diversity as evidenced by the detection of various oligomeric forms. Moreover, the specific behavior of these compounds towards the propagation of the infection by the pathogen is clearly highlighted at the micron scale.

 

1. Jeandet, P.; Delaunois, B.; Conreux, A.; Donnez, D.; Nuzzo, V.; Cordelier, S.; Clément, C.; Courot, E. Biosynthesis, Metabolism, Molecular Engineering, and Biological Functions of Stilbene Phytoalexins in Plants. BioFactors 2010, 36 (5), 331–341.
2. Jeandet, P.; Uddin, M. S.; Clément, C.; Aziz, A.; Jacquard, C.; Khan, H.; Shah, M. A.; Barka, E. A.; Koffas, M.; Nabavi, S. M.; Sobarzo-Sánchez, E.; Renault, J.-H. Production of High Molecular-Ordered Stilbene Oligomers for the Study of Their Biological Activity: Total Synthesis, Bio-Catalyzed Synthesis and Production by Plant Systems. Nat. Prod. Rep. 2023.
3. Becker, L.; Carré, V.; Poutaraud, A.; Merdinoglu, D.; Chaimbault, P. MALDI Mass Spectrometry Imaging for the Simultaneous Location of Resveratrol, Pterostilbene and Viniferins on Grapevine Leaves. Molecules 2014, 19 (7), 10587–10600.
4. Maia, M.; McCann, A.; Malherbe, C.; Far, J.; Cunha, J.; Eiras-Dias, J.; Cordeiro, C.; Eppe, G.; Quinton, L.; Figueiredo, A.; De Pauw, E.; Sousa Silva, M. Grapevine Leaf MALDI-MS Imaging Reveals the Localisation of a Putatively Identified Sucrose Metabolite Associated to Plasmopara Viticola Development. Frontiers in Plant Science 2022, 13.
5. Maia, M.; Carré, V.; Aziz, A.; Jeandet, P. Molecular Localization of Phytoalexins at the Micron Scale: Toward a Better Understanding of Plant-Phytoalexin-Pathogen Dynamics. J. Agric. Food Chem. 2022.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Vincent Carré1, Maia Marisa1, Aziz Aziz2, Jeandet Philippe2

1. LCP-A2MC, Université de Lorraine, Metz, France
2. RIBP, USC INRAE 1488, Université de Reims Champagne-Ardenne, Reims, France

Contact the author*

Keywords

Mass Spectrometry, Imaging Metabolomics, Plant-Pathogen Interaction, Stilbene phytoalexins

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CHARACTERIZATION OF THE VOLATILE COMPOUNDS PROFILE OF COMMERCIAL GRAPPAS OBTAINED FROM THE POMACE OF AMARONE WINES

Grappa is a traditional Italian alcoholic beverage, with an alcohol content generally between 40-60% vol., obtained from the distillation of grape pomace used for the production of wine. Grappa are often aged in wooden barrels. There are various types of grappa: young, aromatic, aged, extra-aged depending on whether the distillate comes from aromatic vines or is aged in wooden barrels for shorter or longer periods. There is also flavored grappa if herbs, fruit or roots are added. All this makes it an extremely heterogeneous product both from an organoleptic and compositional point of view.

IMPACT OF MINERAL AND ORGANIC NITROGEN ADDITION ON ALCOHOLIC FERMENTATION WITH S. CEREVISIAE

During alcoholic fermentation, nitrogen is one of essential nutrient for yeast as it plays a key role in sugar transport and biosynthesis of and wine aromatic compounds (thiols, esters, higher alcohols). The main issue of a lack in yeast assimilable nitrogen (YAN) in winemaking is sluggish or stuck fermentations promoting the growth of alteration species and leads to economic losses. Currently, grape musts are often characterized by low YAN concentration and an increase of sugars concentration due to global warming, making alcoholic fermentations even more difficult. YAN depletion can be corrected by addition of inorganic (ammonia) or organic (yeast derivatives products) nitrogen during alcoholic fermentation.

HYBRID GRAPEVINE CV BACO BLANC, BETWEEN TRADITION AND MODERNISM: FOCUS ON ENDOGENOUS EUGENOL AS RESISTANCE FACTOR TO BOTRYTIS CINEREA

The well-known antifungal and antibiotic molecule, eugenol, is widely spread in various plants including clove, basil and bay. It is also abundant in the hybrid grapevine cultivar (cv) Baco blanc (Vitis vi-nifera x Vitis riparia x Vitis labrusca), created by François Baco (19th century) in the Armagnac region. This study confirmed this cv as highly resistant to Botrytis cinerea by comparing fruit rot incidence and severity with two Vitis vinifera cultivars: Folle Blanche and Ugni Blanc. We have demonstrated the efficiency of eugenol in vitro, by further investigating the effect of small concentrations of eugenol, 3 to 4 ppm (corresponding to IC10), on B. cinerea. By comparing the two major modes of action (direct or volatile antibiosis), the vapour inhibiting effect of eugenol was more powerful. In the skin of Baco blanc berry, the total eugenol concentration reached a maximum at veraison, i.e. 1118 to 1478 μg/kg.

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their number and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.

IMPACT OF THE WINES’ QUALITY ON THE WINE DISTILLATES’ ORGANOLEPTIC PROFILE

Brandy de Jerez (BJ) is a spirit drink made exclusively from spirits and wine distillates and is characterized by the use of casks for aging that previously contained Sherries. The quality and sensory complexity of BJ depend on the raw materials and some factors: grape variety, conditions during processing the wine and its distillation, as well as the aging in the cask. Therefore, the original compounds of the grapes from which it comes are of great interest (1 y 2) being in most cases the Airén variety. Their relationship with the quality of the musts and the wines obtained from them has been studied (3) and varies each year of harvest depending on the weather conditions (4).