terclim by ICS banner
IVES 9 IVES Conference Series 9 LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Abstract

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations. These genetic groups differ from each other by their ploidy level (diploid or triploid), their hybridization status (auto or- allo-triploid) and their ecological fermentation niches (wine, beer, tequila/bioethanol, etc.). While the genomic landscape of B. bruxellensis is nowadays clearer, its phenotypic diversity is still insufficiently assessed in the light of its genetic diversity. In this work, on one hand, we designed an experiment where 151 B. bruxellensis strains representative of the genetic diversity of the species were phenotypically characterized in five natural beverages (grape must, wine, wort, beer, kombucha wort). Various phenotypic traits were monitored: parameters of growth and fermentation ability, metabolites of technological interest… Signatures of local adaptation were investigated and showed that at least one allotriploid population of B. bruxellensis is specifically adapted to wine environment. Moreover, such large screening allowed the identification of ancestral traits like maltose and maltotriose consumption or nitrate metabolization that were randomly lost in specific populations, an evolutionary phenomenon called relaxed selection. On a second hand, two innovative control methods, continuous UV-C light and pulsed light, were tested on a large collection of B. bruxellensis (>100 strains) and other wine yeast species (14 species). These two stabilization treatments were deemed as particularly efficient on wine yeast spoilers (B. bruxellensis including) using i- a drop-platted system to screen various strains and conditions, and ii- lab-made reactors to stabilize several litters of red wines. Altogether, our results contribute to a deeper understanding of the wine spoiler B. bruxellensis both at the fundamental and applied levels.

 

1. Avramova, M., Cibrario, A., Peltier, E., Coton, M., Coton, E., Schacherer, J., Spano, G., Capozzi, V., Blaiotta, G., Salin, F., Dols-Lafargue, M., Grbin, P., Curtin, C., Albertin, W., Masneuf-Pomarede, I., 2018. Brettanomyces bruxellensis population survey reveals a diploid-triploid complex structured according to substrate of isolation and geographical distribution. Sci. Rep. 8, 4136. https://doi.org/10.1038/s41598-018-22580-7
2. Eberlein, C., Abou Saada, O., Friedrich, A., Albertin, W., Schacherer, J., 2021. Different trajectories of polyploidization shape the genomic landscape of the Brettanomyces bruxellensis yeast species. Genome Res. 31, 2316–2326. https://doi.org/10.1101/gr.275380.121
3. Harrouard, J., Eberlein, C., Ballestra, P., Dols‐Lafargue, M., Masneuf-Pomarede, I., Miot-Sertier, C., Schacherer, J., Albertin, W., Ropars, J., 2022. Brettanomyces bruxellensis : Overview of the genetic and phenotypic diversity of an anthropized yeast. Mol. Ecol. 1–22. https://doi.org/10.1111/mec.16439
4. Pilard, E., Harrouard, J., Miot-Sertier, C., Marullo, P., Albertin, W., Ghidossi, R., 2021. Wine yeast species show strong inter- and intra-specific variability in their sensitivity to ultraviolet radiation. Food Microbiol. 100, 103864. https://doi. org/10.1016/j.fm.2021.103864
5. Harrouard, J., Pilard, E., Miot-Sertier, C., Marullo, P., Ferrari, G., Pataro, G., Ghidossi, R., Albertin, W., 2022. Evaluating the Influence of Operational Parameters of Pulsed Light on Wine Related Yeasts: Focus on Inter- and Intra-Specific Variability Sensitivity. SSRN Electron. J. 109. https://doi.org/10.2139/ssrn.4053457

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Jules Harrouard1, Etienne Pilard1, Emilien Peltier1,2, Cecile Miot-Sertier1, Marguerite Dols-Lafargue1,2, Isabelle Masneuf-Pomare-de1,3, Alexandre Pons1,4, Philippe Marullo1,5, Joseph Schacherer6,7, Remy Ghidossi1, Warren Albertin1,2

1. UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140 Villenave d’Ornon, France
2. ENSCBP, Bordeaux INP, 33600, Pessac, France
3. BSA, 33170 Gradignan
4. Tonnellerie Seguin Moreau, Cognac France, France
5. Biolaffort, 11 Rue Aristide Bergès, F-33270 Floirac, France.
6. Université de Strasbourg, CNRS, GMGM, UMR 7156, Strasbourg, France
7. Institut Universitaire de France (IUF), Paris, France

Contact the author*

Keywords

comparative phenotyping, local adaptation, UVC, Pulsed light

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

Most of the effects of ultrasound (US) result from the collapse of bubbles due to cavitation. The shockwave produced is associated with shear forces, along with high localised temperatures and pressures. However, the high-speed stream, radical species formation, and heat generated during sonication may also affect the stability of some enzymes and proteins, depending on their chemical structure. Recently, Ce-lotti et al. (2021) reported the effects of US on protein stability in wines. To investigate this further, the effect of temperature (40°C and 70°C; 60s), sonication (20 kHz and 100 % amplitude, for 20s and 60s, leading to the same temperatures as above, respectively), in combination with Aspergillopepsins I (AP-I) supplementation (100 μg/L), was studied on unstable protein concentration (TLPs and chitinases) using HPLC with an UV–Vis detector in a TLPs-supplemented model system and in an unstable white wine.

WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

Right after the pouring of wine in a glass, a myriad of volatile organic compounds, including ethanol, overwhelm the glass headspace, thus causing the so-called wine’s bouquet [1]. Otherwise, it is worth noting that during wine tasting, most people automatically swirl their glass to enhance the release of aromas in the glass headspace [1]. About a decade ago, Swiss researchers revealed the complex fluid mechanics underlying wine swirling [2]. However, despite mechanically repeated throughout wine tasting, the consequences of glass swirling on the chemical space found in the headspace of wine glasses are still barely known.

INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

Enzymatic browning (BE) of must is caused by polyphenol oxidases (PPOs), tyrosinase and laccase. Both PPOs can oxidize diphenols such as hydroxycinnamic acids (HA) to quinones, which can later polymerize to form melanins [1], which are responsible of BE in white wines and of oxidasic haze in red wines. SO₂ is the main tool used to protect must from BE thanks to its capacity to inhibit PPOs [2]. However, the current trend in winemaking is to reduce and even eliminate this unfriendly additive. Among the different possible alternatives for protecting must against BE, the inoculation with a selected Metschnikowia pulcherrima MP1 is without any doubt one of the most promising ones.

HOW DOES ULTRASOUND TREATMENT AFFECT THE AGEING PROFILE OF AN ITALIAN RED WINE?

Many wine styles require moderate or extended ageing to ensure optimal consumer experience. However, few consumers have the interest or ability to age wine themselves, and holding wine in optimal conditions for extended periods is expensive for producers. A study was conducted on the use of ul-trasound energy on wine, with particular reference to its impact on sensory and chemical profiles. The OIV has authorised the use of ultrasound for processing crushed grapes (must) in Resolution OENO 616-2019, but not yet for finished wine1,2.

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2].