terclim by ICS banner
IVES 9 IVES Conference Series 9 LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Abstract

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations. These genetic groups differ from each other by their ploidy level (diploid or triploid), their hybridization status (auto or- allo-triploid) and their ecological fermentation niches (wine, beer, tequila/bioethanol, etc.). While the genomic landscape of B. bruxellensis is nowadays clearer, its phenotypic diversity is still insufficiently assessed in the light of its genetic diversity. In this work, on one hand, we designed an experiment where 151 B. bruxellensis strains representative of the genetic diversity of the species were phenotypically characterized in five natural beverages (grape must, wine, wort, beer, kombucha wort). Various phenotypic traits were monitored: parameters of growth and fermentation ability, metabolites of technological interest… Signatures of local adaptation were investigated and showed that at least one allotriploid population of B. bruxellensis is specifically adapted to wine environment. Moreover, such large screening allowed the identification of ancestral traits like maltose and maltotriose consumption or nitrate metabolization that were randomly lost in specific populations, an evolutionary phenomenon called relaxed selection. On a second hand, two innovative control methods, continuous UV-C light and pulsed light, were tested on a large collection of B. bruxellensis (>100 strains) and other wine yeast species (14 species). These two stabilization treatments were deemed as particularly efficient on wine yeast spoilers (B. bruxellensis including) using i- a drop-platted system to screen various strains and conditions, and ii- lab-made reactors to stabilize several litters of red wines. Altogether, our results contribute to a deeper understanding of the wine spoiler B. bruxellensis both at the fundamental and applied levels.

 

1. Avramova, M., Cibrario, A., Peltier, E., Coton, M., Coton, E., Schacherer, J., Spano, G., Capozzi, V., Blaiotta, G., Salin, F., Dols-Lafargue, M., Grbin, P., Curtin, C., Albertin, W., Masneuf-Pomarede, I., 2018. Brettanomyces bruxellensis population survey reveals a diploid-triploid complex structured according to substrate of isolation and geographical distribution. Sci. Rep. 8, 4136. https://doi.org/10.1038/s41598-018-22580-7
2. Eberlein, C., Abou Saada, O., Friedrich, A., Albertin, W., Schacherer, J., 2021. Different trajectories of polyploidization shape the genomic landscape of the Brettanomyces bruxellensis yeast species. Genome Res. 31, 2316–2326. https://doi.org/10.1101/gr.275380.121
3. Harrouard, J., Eberlein, C., Ballestra, P., Dols‐Lafargue, M., Masneuf-Pomarede, I., Miot-Sertier, C., Schacherer, J., Albertin, W., Ropars, J., 2022. Brettanomyces bruxellensis : Overview of the genetic and phenotypic diversity of an anthropized yeast. Mol. Ecol. 1–22. https://doi.org/10.1111/mec.16439
4. Pilard, E., Harrouard, J., Miot-Sertier, C., Marullo, P., Albertin, W., Ghidossi, R., 2021. Wine yeast species show strong inter- and intra-specific variability in their sensitivity to ultraviolet radiation. Food Microbiol. 100, 103864. https://doi. org/10.1016/j.fm.2021.103864
5. Harrouard, J., Pilard, E., Miot-Sertier, C., Marullo, P., Ferrari, G., Pataro, G., Ghidossi, R., Albertin, W., 2022. Evaluating the Influence of Operational Parameters of Pulsed Light on Wine Related Yeasts: Focus on Inter- and Intra-Specific Variability Sensitivity. SSRN Electron. J. 109. https://doi.org/10.2139/ssrn.4053457

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Jules Harrouard1, Etienne Pilard1, Emilien Peltier1,2, Cecile Miot-Sertier1, Marguerite Dols-Lafargue1,2, Isabelle Masneuf-Pomare-de1,3, Alexandre Pons1,4, Philippe Marullo1,5, Joseph Schacherer6,7, Remy Ghidossi1, Warren Albertin1,2

1. UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140 Villenave d’Ornon, France
2. ENSCBP, Bordeaux INP, 33600, Pessac, France
3. BSA, 33170 Gradignan
4. Tonnellerie Seguin Moreau, Cognac France, France
5. Biolaffort, 11 Rue Aristide Bergès, F-33270 Floirac, France.
6. Université de Strasbourg, CNRS, GMGM, UMR 7156, Strasbourg, France
7. Institut Universitaire de France (IUF), Paris, France

Contact the author*

Keywords

comparative phenotyping, local adaptation, UVC, Pulsed light

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

MICROFLUIDIC PLATFORM FOR SORTING YEAST CELLS ACCORDING TO THEIR MORPHOLOGY

In this work we briefly present a microfluidic device aiming to sort yeast cells according to their morphology. The technology is based upon microfluidic chips made out of Polydimethylsiloxane and glass using soft lithography processes and replica molding. The microfluidic device was used for encapsulating single yeast cells in liquid droplets containing growth medium. Liquid droplet containing yeast cells were sorted using a real time imaging and decision-making process.

ADDITION OF OAK WOOD ALTERNATIVE PRODUCTS: QUALITATIVE AND SENSORIAL EFFECTS FOR A WHITE WINE OF ALIGOTE

Wines matured in contact with wood are extremely popular with consumers all over the world. Oak wood allows the organoleptic characteristics of wine to be modified. Wines are enriched with volatile and non-volatile compounds extracted from the wood. The aromas extracted from oak wood contribute to the construction of the wine’s aromatic profile and the main polyphenols extracted can modify taste perceptions such as astringency and bitterness. All the compounds extracted from the wood thus contribute to the balance and quality of the wines.

AGEING BOTTLED WINES SUBMERGED IN SEA: DOES IT IMPACT WINE COMPOSITION?

Aging wines is a common practice in oenology, which in recent years has undergone some innovations. Currently, we are witnessing the practice of aging bottled wine in depth, immersed in the sea or in reservoirs, for variable periods of time, but so far, little is known about the impact of aging in depth on the physicochemical properties, of wines.
The objective of this work was to evaluate the impact of this practice on the physicochemical characteristics, in particular to verify changes in the volatile composition of wines bottled and subsequently immersed in depth. A red wine from Cabernet Sauvignon was bottled and a set of bottles were submerged from July to February (2020), another set of bottles were submerged from February to September (2020) and another set was kept in the wine cellar. Bottles from each set were analyzed (in triplicate) in July 2021.

REDUCING NITROGEN FERTILIZATION ALTERS PHENOLIC PROFILES OF VITIS VINIFERA L. CV. CABERNET GERNISCHT WINE OF YANTAI, CHINA

Nitrogen (N) fertilizer is important for grape growth and the quality of wine. It is essential to address the mismatch between N application and wine composition. Cabernet Gernischt (Vitis vinifera L.), as one of the main wine-grape cultivars in China, was introduced to Yantai wine region in 1892. This grape cultivar is traditionally used for quality dry red wine with fruit, spices aroma, ruby red and full-bodied wines. In order to regulate vine growth and improve grape and wine quality, Cabernet Gernischt grapevines were subjected to decreased levels of N treatments, compared to normal N supply treatment, during grape growing seasons of 2019 and 2020.

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).