terclim by ICS banner
IVES 9 IVES Conference Series 9 LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Abstract

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations. These genetic groups differ from each other by their ploidy level (diploid or triploid), their hybridization status (auto or- allo-triploid) and their ecological fermentation niches (wine, beer, tequila/bioethanol, etc.). While the genomic landscape of B. bruxellensis is nowadays clearer, its phenotypic diversity is still insufficiently assessed in the light of its genetic diversity. In this work, on one hand, we designed an experiment where 151 B. bruxellensis strains representative of the genetic diversity of the species were phenotypically characterized in five natural beverages (grape must, wine, wort, beer, kombucha wort). Various phenotypic traits were monitored: parameters of growth and fermentation ability, metabolites of technological interest… Signatures of local adaptation were investigated and showed that at least one allotriploid population of B. bruxellensis is specifically adapted to wine environment. Moreover, such large screening allowed the identification of ancestral traits like maltose and maltotriose consumption or nitrate metabolization that were randomly lost in specific populations, an evolutionary phenomenon called relaxed selection. On a second hand, two innovative control methods, continuous UV-C light and pulsed light, were tested on a large collection of B. bruxellensis (>100 strains) and other wine yeast species (14 species). These two stabilization treatments were deemed as particularly efficient on wine yeast spoilers (B. bruxellensis including) using i- a drop-platted system to screen various strains and conditions, and ii- lab-made reactors to stabilize several litters of red wines. Altogether, our results contribute to a deeper understanding of the wine spoiler B. bruxellensis both at the fundamental and applied levels.

 

1. Avramova, M., Cibrario, A., Peltier, E., Coton, M., Coton, E., Schacherer, J., Spano, G., Capozzi, V., Blaiotta, G., Salin, F., Dols-Lafargue, M., Grbin, P., Curtin, C., Albertin, W., Masneuf-Pomarede, I., 2018. Brettanomyces bruxellensis population survey reveals a diploid-triploid complex structured according to substrate of isolation and geographical distribution. Sci. Rep. 8, 4136. https://doi.org/10.1038/s41598-018-22580-7
2. Eberlein, C., Abou Saada, O., Friedrich, A., Albertin, W., Schacherer, J., 2021. Different trajectories of polyploidization shape the genomic landscape of the Brettanomyces bruxellensis yeast species. Genome Res. 31, 2316–2326. https://doi.org/10.1101/gr.275380.121
3. Harrouard, J., Eberlein, C., Ballestra, P., Dols‐Lafargue, M., Masneuf-Pomarede, I., Miot-Sertier, C., Schacherer, J., Albertin, W., Ropars, J., 2022. Brettanomyces bruxellensis : Overview of the genetic and phenotypic diversity of an anthropized yeast. Mol. Ecol. 1–22. https://doi.org/10.1111/mec.16439
4. Pilard, E., Harrouard, J., Miot-Sertier, C., Marullo, P., Albertin, W., Ghidossi, R., 2021. Wine yeast species show strong inter- and intra-specific variability in their sensitivity to ultraviolet radiation. Food Microbiol. 100, 103864. https://doi. org/10.1016/j.fm.2021.103864
5. Harrouard, J., Pilard, E., Miot-Sertier, C., Marullo, P., Ferrari, G., Pataro, G., Ghidossi, R., Albertin, W., 2022. Evaluating the Influence of Operational Parameters of Pulsed Light on Wine Related Yeasts: Focus on Inter- and Intra-Specific Variability Sensitivity. SSRN Electron. J. 109. https://doi.org/10.2139/ssrn.4053457

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Jules Harrouard1, Etienne Pilard1, Emilien Peltier1,2, Cecile Miot-Sertier1, Marguerite Dols-Lafargue1,2, Isabelle Masneuf-Pomare-de1,3, Alexandre Pons1,4, Philippe Marullo1,5, Joseph Schacherer6,7, Remy Ghidossi1, Warren Albertin1,2

1. UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140 Villenave d’Ornon, France
2. ENSCBP, Bordeaux INP, 33600, Pessac, France
3. BSA, 33170 Gradignan
4. Tonnellerie Seguin Moreau, Cognac France, France
5. Biolaffort, 11 Rue Aristide Bergès, F-33270 Floirac, France.
6. Université de Strasbourg, CNRS, GMGM, UMR 7156, Strasbourg, France
7. Institut Universitaire de France (IUF), Paris, France

Contact the author*

Keywords

comparative phenotyping, local adaptation, UVC, Pulsed light

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INVESTIGATION INTO MOUSY OFF-FLAVOR IN WINE USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY WITH STIR BAR SORPTIVE EXTRACTION

Mousy off-flavor is one of the defects of microbial origin in wine. It is described as a particularly unpleasant defect reminiscent of rodent urine (a “dirty mouse cage”), and grilled foods such as popcorn, rice, crackers, and bread crust. Prior to the 2010s, mousiness was very uncommon but it has been becoming more frequent in recent years. It is often associated with an increase in pH as well as certain oenological practices, which tend to significantly decrease the use of sulfur dioxide.

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).

EFFECT OF WHOLE BUNCH VINIFICATION ON THE ABUNDANCE OF A SWEETENING COMPOUND

In classic red wine-making process, grapes are usually destemmed between harvest and the filling of the vat. However, some winemakers choose to let all or a part of the stems in contact with the juice during vatting, this is called whole bunch vinification. For instance, this practice is traditionally used in some French wine regions, notably in Burgundy, Beaujolais and the Rhone Valley. The choice to keep this part of the grape is likely to affect the sensory properties of wine, as its gustatory perception1,2.

ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

The importance of the non-Saccharomyces yeasts (NSY) in winemaking has been extensively reviewed in the past for their aromatic or bioprotective capacity while, recently their antioxidant/antiradical potential has emerged under winemaking conditions. In the literature the antioxidant potential of NSY was solely explored through their capacity to improve glutathione (GSH) content during alcoholic fermen- tation [1], while more and more studies pointed out the activity of the non-glutathione soluble fraction released by yeasts [2].

OTA DEGRADATION BY BACTERIAL LACCASEST

Laccases from lactic acid bacteria (LAB) are described as multicopper oxidase enzymes with copper union sites. Among their applications, phenolic compounds’ oxidation and biogenic amines’ degradation, have been described. Besides, the role of LAB in the toxicity reduction of ochratoxin A (OTA) has been reported (Fuchs et al., 2008; Luz et al., 2018). Fungal laccases, but not bacterial laccases, have been screened for OTA and mycotoxins’ degradation (Loi et al., 2018). OTA is a mycotoxin produced by some fungal species, such as Penicillium and Aspergillus sp., which infect grape bunches used for winemaking.