terclim by ICS banner
IVES 9 IVES Conference Series 9 METABOLIC INTERACTIONS OF SACCHAROMYCES CEREVISIAE COCULTURES: A WAY TO EXTEND THE AROMA DIVERSITY OF CHARDONNAY WINE

METABOLIC INTERACTIONS OF SACCHAROMYCES CEREVISIAE COCULTURES: A WAY TO EXTEND THE AROMA DIVERSITY OF CHARDONNAY WINE

Abstract

Yeast co-inoculations in winemaking have been investigated in various applications, but most often in the context of modulating the aromatic profiles of wines. Our study aimed to characterize S. cerevisiae interactions and their impact on wine by taking an integrative approach. Three cocultures and corresponding pure cultures of S. cerevisiae were characterized according to their fermentative capacities, the chemical composition and aromatic profile of the associated Chardonnay wines. The various strains studied within the cocultures showed different behaviors regarding their development. More than half of the 67 volatile compounds quantified were modulated by interactions, including 18 relevant wine aroma compounds. The main families affected were higher alcohols and their associated esters, vinyl phenols, and fatty acids. Coculture makes it possible to obtain new aromatic expressions that do not exist in the original pure cultures attributed to yeast interactions. The sensory profile of the wines related to the cocultures differed from the wines associated with the pure cultures. However, they also differed from the blends (50/50 v/v) of post AF wines from pure cultures. Based on the exometabolome, this was confirmed. The cocultures were revealed as not being simple additions of two wines represented by blend, thereby indicating complex interactions. High resolution mass spectrometry allowed to highlight thousands of cocultures biomarkers. Most of these biomarkers belonged to metabolic pathways involved in nitrogen metabolism. The latter is therefore a marker of changes associated with interactions between two strains of S. cerevisiae. Despite of preserved fermentative properties, the described interactions in- duced a modification of the chemical composition and sensory profile of the wines from the cocultures. A comprehensive approach by combining different techniques is essential to understand yeast interactions and describe the consequences on wine.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Fanny Bordet 1,4, Rémy Romanet1, Florian Bahut1,4, Jordi Ballester2, Camille Eicher1, Cristina Peña3, Vicente Ferreira3, Régis Gou-geon1,5, Anne Julien-Ortiz4, Chloé Roullier-Gall1, Hervé Alexandre1

1. Univ. Bourgogne Franche-Comté, Institut Agro Dijon, PAM UMR A 02.102, 21000 Dijon, France, IUVV, Rue Claude Ladrey, 21000 Dijon, France
2. Centre des Sciences du Goût et de l’Alimentation, Institut Agro Dijon, CNRS, INRA, Université Bourgogne – Franche-Comté, 21000 Dijon, France
3. University of Zaragoza, Dpt. Química Analítica. Facultad de Ciencias, 50009 Zaragoza, Spain
4. Lallemand SAS, 19 rue des Briquetiers, 31000 Blagnac, France
5. DIVVA (Développement Innovation Vigne Vin Aliments) Platform/PAM UMR, IUVV, Rue Claude Ladrey, 21000 Dijon, France

Contact the author*

Keywords

fermentation, interactions, Saccharomyces cervevisiae, metabolomic

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

The use of new fungus disease-tolerant varieties is a promising long-term solution to better manage chemical input in viticulture, but unfortunately little is known regarding these new hybrids fruit development and metabolites accumulation in front of abiotic stresses such as water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD.

CHARACTERIZATION OF THE VOLATILE COMPOUNDS PROFILE OF COMMERCIAL GRAPPAS OBTAINED FROM THE POMACE OF AMARONE WINES

Grappa is a traditional Italian alcoholic beverage, with an alcohol content generally between 40-60% vol., obtained from the distillation of grape pomace used for the production of wine. Grappa are often aged in wooden barrels. There are various types of grappa: young, aromatic, aged, extra-aged depending on whether the distillate comes from aromatic vines or is aged in wooden barrels for shorter or longer periods. There is also flavored grappa if herbs, fruit or roots are added. All this makes it an extremely heterogeneous product both from an organoleptic and compositional point of view.

PHOTOCHEMICAL DEGRADATION OF TRYPTOPHAN IN MODEL WINE: IMPACT OF HEAVY METALS AND OXYGEN ON 2-AMINOACETOPHENONE FORMATION

The wine industry worldwide faces more and more challenges due to climate change, such as increased dryness in some areas, water stress, sunburn and early harvesting during hot summer temperatures¹. One of the resulting problems for the wine quality might be a higher prevalence of the untypical aging off-flavor (ATA)². A substance, which Rapp and Versini made responsible for ATA, is the 2-aminoace-tophenone (2-AAP)³. 2-AAP in wine causes a naphthalene, wet towels, wet wool, acacia flower or just a soapy note⁴.

CONTRIBUTION OF VOLATILE THIOLS TO THE AROMA OF RIESLING WINES FROM THREE REGIONS IN GERMANY AND FRANCE (RHEINGAU, MOSEL, AND ALSACE)

Riesling wines are appreciated for their diverse aromas, ranging from the fruity fresh characters in young vintages to the fragrant empyreumatic notes developed with aging. Wine tasters often refer to Riesling wines as prime examples showcasing terroir, with their typical aroma profiles reflecting the geographical provenance of the wine. However, the molecular basis of the distinctive aromas of these varietal wines from major Riesling producing regions in Europe have not been fully elucidated. In this study, new lights were shed on the chemical characterization and the sensory contribution of volatile thiols to Riesling wines from Rheingau, Mosel, and Alsace. First, Riesling wines (n = 46) from the three regions were collected and assessed for their aroma typicality by an expert panel.

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.