terclim by ICS banner
IVES 9 IVES Conference Series 9 METABOLIC INTERACTIONS OF SACCHAROMYCES CEREVISIAE COCULTURES: A WAY TO EXTEND THE AROMA DIVERSITY OF CHARDONNAY WINE

METABOLIC INTERACTIONS OF SACCHAROMYCES CEREVISIAE COCULTURES: A WAY TO EXTEND THE AROMA DIVERSITY OF CHARDONNAY WINE

Abstract

Yeast co-inoculations in winemaking have been investigated in various applications, but most often in the context of modulating the aromatic profiles of wines. Our study aimed to characterize S. cerevisiae interactions and their impact on wine by taking an integrative approach. Three cocultures and corresponding pure cultures of S. cerevisiae were characterized according to their fermentative capacities, the chemical composition and aromatic profile of the associated Chardonnay wines. The various strains studied within the cocultures showed different behaviors regarding their development. More than half of the 67 volatile compounds quantified were modulated by interactions, including 18 relevant wine aroma compounds. The main families affected were higher alcohols and their associated esters, vinyl phenols, and fatty acids. Coculture makes it possible to obtain new aromatic expressions that do not exist in the original pure cultures attributed to yeast interactions. The sensory profile of the wines related to the cocultures differed from the wines associated with the pure cultures. However, they also differed from the blends (50/50 v/v) of post AF wines from pure cultures. Based on the exometabolome, this was confirmed. The cocultures were revealed as not being simple additions of two wines represented by blend, thereby indicating complex interactions. High resolution mass spectrometry allowed to highlight thousands of cocultures biomarkers. Most of these biomarkers belonged to metabolic pathways involved in nitrogen metabolism. The latter is therefore a marker of changes associated with interactions between two strains of S. cerevisiae. Despite of preserved fermentative properties, the described interactions in- duced a modification of the chemical composition and sensory profile of the wines from the cocultures. A comprehensive approach by combining different techniques is essential to understand yeast interactions and describe the consequences on wine.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Fanny Bordet 1,4, Rémy Romanet1, Florian Bahut1,4, Jordi Ballester2, Camille Eicher1, Cristina Peña3, Vicente Ferreira3, Régis Gou-geon1,5, Anne Julien-Ortiz4, Chloé Roullier-Gall1, Hervé Alexandre1

1. Univ. Bourgogne Franche-Comté, Institut Agro Dijon, PAM UMR A 02.102, 21000 Dijon, France, IUVV, Rue Claude Ladrey, 21000 Dijon, France
2. Centre des Sciences du Goût et de l’Alimentation, Institut Agro Dijon, CNRS, INRA, Université Bourgogne – Franche-Comté, 21000 Dijon, France
3. University of Zaragoza, Dpt. Química Analítica. Facultad de Ciencias, 50009 Zaragoza, Spain
4. Lallemand SAS, 19 rue des Briquetiers, 31000 Blagnac, France
5. DIVVA (Développement Innovation Vigne Vin Aliments) Platform/PAM UMR, IUVV, Rue Claude Ladrey, 21000 Dijon, France

Contact the author*

Keywords

fermentation, interactions, Saccharomyces cervevisiae, metabolomic

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.

WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

Right after the pouring of wine in a glass, a myriad of volatile organic compounds, including ethanol, overwhelm the glass headspace, thus causing the so-called wine’s bouquet [1]. Otherwise, it is worth noting that during wine tasting, most people automatically swirl their glass to enhance the release of aromas in the glass headspace [1]. About a decade ago, Swiss researchers revealed the complex fluid mechanics underlying wine swirling [2]. However, despite mechanically repeated throughout wine tasting, the consequences of glass swirling on the chemical space found in the headspace of wine glasses are still barely known.

ENRICHMENT OF THE OENOLOGICAL MALDI-TOF/MS PROTEIN SPECTRA DATABASE FOR RELIABLE OENOLOGICAL YEAST AND BACTERIA IDENTIFICATION

The Matrix Assisted Laser Desorption/Ionization–Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology is commonly used in food and medical sector to identify yeast or bacteria species isolated from a nutritive culture media. Since a decade, brewery and oenology industries have been attracted to this method which combines fast analysis times, reliability and low cost of analysis. Briefly, this method is based on the comparison of the MALDI-TOF/MS protein spectra of an isolated colony of yeast or bacteria with those contain in a manufacturer’s reference protein spectra database. Initiated in 2015, the creation of the first oenological mass spectra database has proved to be essential for increase quality of species identification.

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2
One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.

YEAST LEES OBTAINED AFTER STARMERELLA BACILLARIS FERMENTATION AS A SOURCE OF POTENTIAL COMPOUNDS TO IMPROVE SUSTAINABILITY IN WINE- MAKING

The yeast residue left over after wine-making, known as wine yeast lees, is a source of various compounds that are of interest for wine and food industry. In winemaking, yeast-derived glycocompounds and proteins represent an example of circular economy approach since they have been proven to reduce the need for bentonite and animal-based fining agents. This leads to a reduced environmental impact in the stabilization and fining processes in winemaking. (de Iseppi et al., 2020, 2021).