terclim by ICS banner
IVES 9 IVES Conference Series 9 METABOLIC INTERACTIONS OF SACCHAROMYCES CEREVISIAE COCULTURES: A WAY TO EXTEND THE AROMA DIVERSITY OF CHARDONNAY WINE

METABOLIC INTERACTIONS OF SACCHAROMYCES CEREVISIAE COCULTURES: A WAY TO EXTEND THE AROMA DIVERSITY OF CHARDONNAY WINE

Abstract

Yeast co-inoculations in winemaking have been investigated in various applications, but most often in the context of modulating the aromatic profiles of wines. Our study aimed to characterize S. cerevisiae interactions and their impact on wine by taking an integrative approach. Three cocultures and corresponding pure cultures of S. cerevisiae were characterized according to their fermentative capacities, the chemical composition and aromatic profile of the associated Chardonnay wines. The various strains studied within the cocultures showed different behaviors regarding their development. More than half of the 67 volatile compounds quantified were modulated by interactions, including 18 relevant wine aroma compounds. The main families affected were higher alcohols and their associated esters, vinyl phenols, and fatty acids. Coculture makes it possible to obtain new aromatic expressions that do not exist in the original pure cultures attributed to yeast interactions. The sensory profile of the wines related to the cocultures differed from the wines associated with the pure cultures. However, they also differed from the blends (50/50 v/v) of post AF wines from pure cultures. Based on the exometabolome, this was confirmed. The cocultures were revealed as not being simple additions of two wines represented by blend, thereby indicating complex interactions. High resolution mass spectrometry allowed to highlight thousands of cocultures biomarkers. Most of these biomarkers belonged to metabolic pathways involved in nitrogen metabolism. The latter is therefore a marker of changes associated with interactions between two strains of S. cerevisiae. Despite of preserved fermentative properties, the described interactions in- duced a modification of the chemical composition and sensory profile of the wines from the cocultures. A comprehensive approach by combining different techniques is essential to understand yeast interactions and describe the consequences on wine.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Fanny Bordet 1,4, Rémy Romanet1, Florian Bahut1,4, Jordi Ballester2, Camille Eicher1, Cristina Peña3, Vicente Ferreira3, Régis Gou-geon1,5, Anne Julien-Ortiz4, Chloé Roullier-Gall1, Hervé Alexandre1

1. Univ. Bourgogne Franche-Comté, Institut Agro Dijon, PAM UMR A 02.102, 21000 Dijon, France, IUVV, Rue Claude Ladrey, 21000 Dijon, France
2. Centre des Sciences du Goût et de l’Alimentation, Institut Agro Dijon, CNRS, INRA, Université Bourgogne – Franche-Comté, 21000 Dijon, France
3. University of Zaragoza, Dpt. Química Analítica. Facultad de Ciencias, 50009 Zaragoza, Spain
4. Lallemand SAS, 19 rue des Briquetiers, 31000 Blagnac, France
5. DIVVA (Développement Innovation Vigne Vin Aliments) Platform/PAM UMR, IUVV, Rue Claude Ladrey, 21000 Dijon, France

Contact the author*

Keywords

fermentation, interactions, Saccharomyces cervevisiae, metabolomic

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ESTIMATING THE INITIAL OXYGEN RELEASE (IOR) OF CORK CLOSURES

Many factors influence aging of bottled wine, oxygen transfer through the closure is included. The maximum uptake of wine before oxidation begins varies from 60 mg.L-¹ to 180 mg.L-1 for white and red wines respectively [1].
The process of bottling may lead to considerable amounts of oxygen. The actual contribution of the transfer through the closure system becomes relevant at the bottle storage, but the amounts are small compared to prepacking operations [2] and to the total oxygen attained during filling.

REDUCING NITROGEN FERTILIZATION ALTERS PHENOLIC PROFILES OF VITIS VINIFERA L. CV. CABERNET GERNISCHT WINE OF YANTAI, CHINA

Nitrogen (N) fertilizer is important for grape growth and the quality of wine. It is essential to address the mismatch between N application and wine composition. Cabernet Gernischt (Vitis vinifera L.), as one of the main wine-grape cultivars in China, was introduced to Yantai wine region in 1892. This grape cultivar is traditionally used for quality dry red wine with fruit, spices aroma, ruby red and full-bodied wines. In order to regulate vine growth and improve grape and wine quality, Cabernet Gernischt grapevines were subjected to decreased levels of N treatments, compared to normal N supply treatment, during grape growing seasons of 2019 and 2020.

INFLUENCE OF THE NITROGEN / LIPIDS RATIO OF MUSTS ON THE REVELATION OF AROMATIC COMPOUNDS IN SAUVIGNON BLANC WINE

Production of volatile compounds by yeast is known to be modulated by must nitrogen. Nevertheless, various parameter of must quality have an impact on yeast fermentation. In this study we propose to evaluate the impact of nitrogen / lipids balance on a Sauvignon Blanc grape juice (Val de Loire).
Must was prepared from the same grapes at pilot scale. Three modalities were carried out: direct pressing, direct pressing with a pre-fermentation cold stabulation and pellicular maceration before pressing.

CHANGES IN CU FRACTIONS AND RIBOFLAVIN IN WHITE WINES DURING SHORT-TERM LIGHT EXPOSURE: IMPACTS OF OXYGEN AND BOTTLE COLOUR

Copper in white wine can be associated with Cu(II) organic acids (Cu fraction I), Cu(I) thiol species (Cu fraction II), and Cu sulfides (Cu fraction III). The first two fractions are associated with the repression of reductive aromas in white wine, but these fractions gradually decrease in concentration during the normal bottle aging of wine. Although exposure of white wine to fluorescent light is known to induce the accumulation of volatile sulfur compounds, causing light-struck aroma, the influence on the loss of protective Cu fractions is uncertain. Riboflavin is known to be a critical initiator of photochemical reac-tions in wine, but the rate of its decay under short-term light exposure in different coloured bottles and for wine of different oxygen concentrations is not well understood.

INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

Wine grapes exposed to wildfire smoke have resulted in wines with burnt and ashy sensory characteristics¹, that are undesirable qualities in wine. In extreme wildfire events, this can lead to total loss of grape crop. Currently there are no effective solutions in the market to prevent the uptake of smoke compounds into grapes. In this study, previously developed innovative film coatings were tested to analyze their effectiveness in reducing smoke phenol absorption². Four different cellulose nanofiber-based film types were investigated.