terclim by ICS banner
IVES 9 IVES Conference Series 9 WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

Abstract

Right after the pouring of wine in a glass, a myriad of volatile organic compounds, including ethanol, overwhelm the glass headspace, thus causing the so-called wine’s bouquet [1]. Otherwise, it is worth noting that during wine tasting, most people automatically swirl their glass to enhance the release of aromas in the glass headspace [1]. About a decade ago, Swiss researchers revealed the complex fluid mechanics underlying wine swirling [2]. However, despite mechanically repeated throughout wine tasting, the consequences of glass swirling on the chemical space found in the headspace of wine glasses are still barely known. A preliminary study was thus conducted to characterize the dynamic parameters of the wine’s taster gesture. From a kinematic point of view, wine swirling, on a flat support, follows an orbital motion described by its radius of gyration and its angular speed. A video processing program was developed to de- cipher the basic statistical parameters of this orbital motion done by a panel of 85 participants swirling INAO glasses filled with increasing levels of a water/ethanol mixture. Based on these statistical data, a homemade 3D-printed orbital shaking device was designed to replicate a standardized and repeatable glass swirling motion. Actually, In champagne and sparkling wine tasting, from the service of wine into the glass, gas-phase CO₂ was found to massively invade the glass headspace [3,4]. Therefore, the idea has emerged that gas-phase CO₂ could be considered as an ideal tracker to better understand the conse- quences of wine swirling on the chemical headspace inhaled by wine tasters. A spectrometer initially developed to monitor gas-phase CO₂ under static conditions was thus upgraded for the monitoring of gas-phase CO₂ in the headspace of champagne glasses automatically swirled by the 3D-printed orbi- tal shaking device [5]. The first datasets recorded thanks to this setup show a sudden drop in the CO₂ concentration in the glass headspace, probably triggered by the liquid wave traveling along the glass wall following the action of swirling the glass.

 

1. R. S. Jackson, “Wine Tasting: A Professional Handbook”, 2nd edition, Academic Press, 2009.
2. M. Reclari et al., “Surface wave dynamics in orbital shaken cylindrical containers” Phys. Fluids, 26, 052104, 2014.
3. G. Liger-Belair, “Effervescence in champagne and sparkling wines: From grape harvest to bubble rise” Eur. Phys. J Special Topics, 226, 3-116, 2017.
4. A. L. Moriaux et al., “How does gas-phase CO₂ evolve in the headspace of champagne glasses?,” J. Agric. Food Chem., 69, 7, 2262–2270, 2021.
5. F. Lecasse et al., “An Infrared Laser Sensor for Monitoring Gas-Phase CO₂ in the Headspace of Champagne Glasses under Wine Swirling Conditions” Sensors, 22, 15, 5764, 2022.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Florian LECASSE¹, Raphaël VALLON¹, Clément JACQUEMIN¹, Clara CILINDRE¹, Bertrand PARVITTE¹, Virginie ZENINARI¹, Gérard LIGER-BELAIR¹

1. Groupe de Spectrométrie Moléculaire et Atmosphérique (GSMA), UMR CNRS 7331, UFR Sciences Exactes et Naturelles

Contact the author*

Keywords

Wine swirling, Champagne, Diode Laser Sensor, CO₂

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PINKING PHENOMENA ON WHITE WINES: RELATION BETWEEN PINKING SUSCEPTIBILITY INDEX (PSI) AND WINE ANTHOCYANINS CONTENT

Pinking is the emergence of pink tones in white wines exclusively produced from white grape varieties, known as pinking phenomena for many years. Pinking is essentially appeared when white wines are produced under reducing conditions [1,2,3]. Pinking usually occurs after bottling and storage of white wines, but its appearance has also been described after alcoholic fermentation or even as soon as the grape must is extracted [4]. Therefore, the purpose of this work was to investigate the existence of an-thocyanins in white wines made from different white grape varieties and grown locations and critically evaluate the most common method used for predicting pinking appearance in white wines: the Pinking Susceptibility Index (PSI).

UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

In a climate change context and aiming for sustainable, high-quality Bordeaux wine production, this project examines the impact of grape maturity levels in various cultivars chosen for their adaptability, genetic diversity, and potential to enhance wine quality. The study explores the effects on wine compo-sition and quality through sensory and molecular methods. We studied eight 14-year-old Vitis vinifera cv. grape varieties from the same area (VITADAPT plots 1 and 5): Cabernet Franc, Cabernet Sauvignon, Carmenère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional.

WHICH IMPACT FOR PROANTHOCYANIDIC TANNINS ON RED WINE FRUITY AROMA? SENSORY AND PHYSICOCHEMICAL APPROACHES

Previous research on the fruity character of red wines highlighted the role of esters. Literature provides evidence that, besides these esters, other compounds that are not necessarily volatiles may have an important impact on the overall aroma of wine, contributing to a modulation of its global aromatic expression. The goal of this work was to assess the olfactory consequences of a mixture between esters and proanthocyanidic tannins, through sensory and physico-chemical approaches.
Sensory analysis of numerous aromatic reconstitutions, including triangular tests, detection thresholds, and sensory profiles, were conducted in order to evaluate the sensory impact of tannins on red wine esters perception.

IMPACT OF CLIMATIC CONDITIONS ON THE SEASONING QUALITY OF OAK WOOD FOR OENOLOGICAL USE (QUERCUS PETRAEA)

For coopers, seasoning and toasting are considered crucial steps in barrel making during which the oak wood develops specific organoleptic properties. Seasoning, carried out in the open air, allows reducing the moisture content of the staves to between 14 and 18% (compared to 70 to 90% after splitting) while modulating the intrinsic composition of the oak wood. Toasting consists of applying different degrees of heat to a barrel for a specific period of time. As the temperature increases, oak wood produces a wide range of chemical compounds through thermal degradation of its intrinsic composition.

THE EFFECT OF DIFFERENT TERROIRS ON AROMA COMPOUNDS OF ‘KALECIK KARASI’ WINES

Kalecik Karası is a domestic grape variety of Turkey, originating from Kalecik district, 80 km from Ankara. Although there is no definite evidence, it is known that it was used in wine production by many civilizations that lived in the Anatolian region, especially the Hittites. Compared to other black wine grapes, it stands out with its low tannin content, rich fruity aroma and complex structure. In good vintages, red fruits such as strawberries, cherries and raspberries stand out in the aroma profile. Although its structure is elegant, it has the potential to age and develop similar to the ‘Pinot Noir’ wine of the Burgundy region. This offers a complex aroma structure including red flowers, earth and ripe fruits.