terclim by ICS banner
IVES 9 IVES Conference Series 9 ‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Abstract

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.

First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).

Secondly, a survey of over 100 commercial Australian red wines across 10 different varieties supported the outcome of the foliar application trial.2 While all red wines contained 3-SH above the sensory detection threshold (60 ng/L, aqueous ethanol), no wines were observed to contain detectable concentrations of 3-SHA. As such, the acetylation of 3-SH to 3-SHA in red wine fermentations appears to be extremely limited.

Lastly, 3-SH and/or 3-SHA were spiked into four different varieties of red wine to understand the impact on sensory attributes.2 Traditionally lighter varieties (Pinot Noir and Grenache) had increased ‘red fruit’ and ‘lolly’ ratings at low concentrations of 3-SH and 3-SHA but changed to ‘tropical’ at higher concentrations. For Cabernet Sauvignon, 3-SH and 3-SHA additions resulted in increases to ‘blackcurrant’ and ‘tropical’ attributes, whereas Shiraz additions of 3-SH resulted in ‘sweaty’ and ‘tropical’ descriptors.

The ‘tropical’ thiol, 3-SH, was ubiquitous in Australian red wines although the acetylation to 3-SHA was not commonly observed. The impact of these thiols in red wines differed by variety, and their presence was increased by vineyard foliar application treatments. As such, vineyard management practises might hold the key to avoiding undesirable expressions of ‘tropical’ characters in red wine.

 

1. Cordente, A. G.; Curtin, C. D.; Solomon, M.; Kulcsar, A. C.; Watson, F.; Pisaniello, L.; Schmidt, S. A.; Espinase Nandorfy, D. Modulation of volatile thiol release during fermentation of red musts by wine yeast. Processes 2022, 10 (3), 502.
2. Hixson, J.; Bilogrevic, E.; Capone, D.; Nandorfy, D. E.; Francis, L.; Petrie, P.; Solomon, M.; Krstic, M. AWRI report: Enhancing tropical fruit flavour in Chardonnay and Shiraz through foliar nutrient sprays. Wine & Vitic. J. 2020, 35 (3), 30-33. 
3. Siebert, T.; Francis, L.; Pisaniello, L.; Melzer, S.; Bey, L.; Watson, F.; Espinase Nandorfy, D.; Cordente, T. Do varietal thiols matter in red wine? AWRI Tech. Rev. 2019, 243, 10-15.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Tracey Siebert1, Mark Solomon1, Lisa Pisaniello1, Damian Espinase Nandorfy1,2, Eleanor Bilogrevic1, Flynn Wat-Son1, Toni Cordente1, Leigh Francis1, Josh Hixson1

1. The Australian Wine Research Institute, Waite Precinct, Hartley Grove cnr Paratoo Road, Urrbrae 5064, Australia.
2. CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia.

Contact the author*

Keywords

red wine, ‘tropical’ aroma, thiols, sensory

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

RED WINE AGING THROUGH 1H-NMR METABOLOMICS

Premium red wines are often aged in oak barrel. This widespread winemaking process is used, among others, to provide roundness and complexity to the wine. The study of wine evolution during barrel aging is crucial to better ensure control of wine quality.
¹H-NMR has already been proved to be an efficient tool to monitor winemaking process [1]. Indeed, it is a non-destructive technique, it requires a small amount of sample and a short time of analysis, yet it provides clues about several chemical families.

IDENTIFYING POTENTIAL CHEMICAL MARKERS RESPONSIBLE FOR THE PERMISSIVENESS OF BORDEAUX RED WINES AGAINST BRETTANOMYCES BRUXELLENSIS USING UNTARGETED METABOLOMICS

All along the red winemaking process, many microorganisms develop in wine, some being beneficial and essential, others being feared spoilers. One of the most feared microbial enemy of wine all around the world is Brettanomyces bruxellensis. Indeed, in red wines, this yeast produces volatile phenols, molecules associated with a flavor described as “horse sweat”, “burnt plastic” or “leather”. To produce significant and detectable concentrations of these undesired molecules, the yeasts should first grow and become numerous enough. Even if the genetic group of the strain present and the cellar temperature may modulate the yeast growth rate¹ and thus the risk of spoilage, the main factor seems to be the wines themselves, some being much more permissive to B. bruxellensis development than others.

IMPACT OF ABIOTIC AND BIOTIC FACTORS ON BIOADHESION PROPERTIES OF BRETTANOMYCES BRUXELLENSIS

Brettanomyces bruxellensis is an ubiquitous yeast associated with different fermentation media such as beer and kombucha, where its presence is beneficial to bring an aromatic typicity. However, it is a main spoilage yeast in wines, in which it produces volatile phenols responsible for organoleptic deviations causing significant economic losses (Chatonnet et al., 1992). Cellar and winery equipment’s are considered as the first source of contamination, during fermentation and wine ageing process (Connel et al., 2002). Indeed, it is possible to find B. bruxellensis in the air, on walls and floors of the cellars, on small materials, vats and barrels.

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.

IMPACT OF MUST NITROGEN DEFICIENCY ON WHITE WINE COMPOSITION DEPENDING ON GRAPE VARIETY

Nitrogen (N) nutrition of the vineyard strongly influences the must and the wine compositions. Several chemical markers present in wine (i.e., proline, succinic acid, higher alcohols and phenolic compounds) have been proposed for the cultivar Chasselas, as indicators of N deficiency in the grape must at harvest [1]. Grape genetics potentially influences the impact of N deficiency on grape composition, as well as on the concentration of potential indicators in the wine. The goal of this study was to evaluate if the che- mical markers found in Chasselas wine can be extended for other white wines to indicate N deficiency in the grape must.