terclim by ICS banner
IVES 9 IVES Conference Series 9 ‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Abstract

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.

First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).

Secondly, a survey of over 100 commercial Australian red wines across 10 different varieties supported the outcome of the foliar application trial.2 While all red wines contained 3-SH above the sensory detection threshold (60 ng/L, aqueous ethanol), no wines were observed to contain detectable concentrations of 3-SHA. As such, the acetylation of 3-SH to 3-SHA in red wine fermentations appears to be extremely limited.

Lastly, 3-SH and/or 3-SHA were spiked into four different varieties of red wine to understand the impact on sensory attributes.2 Traditionally lighter varieties (Pinot Noir and Grenache) had increased ‘red fruit’ and ‘lolly’ ratings at low concentrations of 3-SH and 3-SHA but changed to ‘tropical’ at higher concentrations. For Cabernet Sauvignon, 3-SH and 3-SHA additions resulted in increases to ‘blackcurrant’ and ‘tropical’ attributes, whereas Shiraz additions of 3-SH resulted in ‘sweaty’ and ‘tropical’ descriptors.

The ‘tropical’ thiol, 3-SH, was ubiquitous in Australian red wines although the acetylation to 3-SHA was not commonly observed. The impact of these thiols in red wines differed by variety, and their presence was increased by vineyard foliar application treatments. As such, vineyard management practises might hold the key to avoiding undesirable expressions of ‘tropical’ characters in red wine.

 

1. Cordente, A. G.; Curtin, C. D.; Solomon, M.; Kulcsar, A. C.; Watson, F.; Pisaniello, L.; Schmidt, S. A.; Espinase Nandorfy, D. Modulation of volatile thiol release during fermentation of red musts by wine yeast. Processes 2022, 10 (3), 502.
2. Hixson, J.; Bilogrevic, E.; Capone, D.; Nandorfy, D. E.; Francis, L.; Petrie, P.; Solomon, M.; Krstic, M. AWRI report: Enhancing tropical fruit flavour in Chardonnay and Shiraz through foliar nutrient sprays. Wine & Vitic. J. 2020, 35 (3), 30-33. 
3. Siebert, T.; Francis, L.; Pisaniello, L.; Melzer, S.; Bey, L.; Watson, F.; Espinase Nandorfy, D.; Cordente, T. Do varietal thiols matter in red wine? AWRI Tech. Rev. 2019, 243, 10-15.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Tracey Siebert1, Mark Solomon1, Lisa Pisaniello1, Damian Espinase Nandorfy1,2, Eleanor Bilogrevic1, Flynn Wat-Son1, Toni Cordente1, Leigh Francis1, Josh Hixson1

1. The Australian Wine Research Institute, Waite Precinct, Hartley Grove cnr Paratoo Road, Urrbrae 5064, Australia.
2. CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia.

Contact the author*

Keywords

red wine, ‘tropical’ aroma, thiols, sensory

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

Most of the effects of ultrasound (US) result from the collapse of bubbles due to cavitation. The shockwave produced is associated with shear forces, along with high localised temperatures and pressures. However, the high-speed stream, radical species formation, and heat generated during sonication may also affect the stability of some enzymes and proteins, depending on their chemical structure. Recently, Ce-lotti et al. (2021) reported the effects of US on protein stability in wines. To investigate this further, the effect of temperature (40°C and 70°C; 60s), sonication (20 kHz and 100 % amplitude, for 20s and 60s, leading to the same temperatures as above, respectively), in combination with Aspergillopepsins I (AP-I) supplementation (100 μg/L), was studied on unstable protein concentration (TLPs and chitinases) using HPLC with an UV–Vis detector in a TLPs-supplemented model system and in an unstable white wine.

WHICH IMPACT FOR PROANTHOCYANIDIC TANNINS ON RED WINE FRUITY AROMA? SENSORY AND PHYSICOCHEMICAL APPROACHES

Previous research on the fruity character of red wines highlighted the role of esters. Literature provides evidence that, besides these esters, other compounds that are not necessarily volatiles may have an important impact on the overall aroma of wine, contributing to a modulation of its global aromatic expression. The goal of this work was to assess the olfactory consequences of a mixture between esters and proanthocyanidic tannins, through sensory and physico-chemical approaches.
Sensory analysis of numerous aromatic reconstitutions, including triangular tests, detection thresholds, and sensory profiles, were conducted in order to evaluate the sensory impact of tannins on red wine esters perception.

WINE WITHOUT ADDED SO₂: OXYGEN IMPACT AND EVOLUTION ON THE POLYPHENOLIC COMPOSITION DURING RED WINE AGING

SO₂ play a major role in the stability and wine during storage. Nowadays, the reduction of chemical input during red winemaking and especially the removing SO₂ is a growing expectation from the consumers. Winemaking without SO₂ is a big challenge for the winemakers since the lack of SO₂ affects directly the wine chemical evolution such as the phenolic compounds as well as its microbiological stability.

EXPLORING RED WINE TYPICITY OF CORBIÈRES: EVALUATION OF THE DEGREE OF IMPACT OF VINIFICATION PROCESS ON THE CHEMICAL COMPOSITION AND ORGANOLEPTIC PROPERTIES OF WINES FROM DIFFERENT TERROIR

It is important nowadays for wine producers to create a product that is an expression of their terroir, a concept including the interaction between a place (topography, climate, soil), the people (tradition, winemaking and viticultural practices) and the resulting product (grape varieties, wines) [1]. Nonetheless, wine’s typicity linked to those terroirs must be easily recognizable by consumers thanks to distinctive sensory characters and composition [2]. Among the compounds of interest, aromatic compounds and polyphenols play an important role in the quality of red wines, by impacting on the odour, color and astringency. To explore the influence of terroir factors, including climate, soil and human practices, on the chemical and sensory profile of wines, red wines from five terroirs of the Corbières appellation were subjected to a general study approach.

PAIRING WINE AND STOPPER: AN OLD ISSUE WITH NEW ACHIEVEMENTS

The sensory characteristics of wine are a topic studied by several researchers over time, but it continues to be a current and challenging subject. These characteristics are fundamental for the consumer acceptability, which has increasingly aroused their interest to modulate them in line with current market trends and innovation demands. The wine physical-chemical and sensory properties depend on a wide set of factors: they begin to be designed in the vineyard and are later constructed during the various stages of winemaking. Afterwards, the wine is placed in bottles and stored or commercialized.