terclim by ICS banner
IVES 9 IVES Conference Series 9 ‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Abstract

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.

First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).

Secondly, a survey of over 100 commercial Australian red wines across 10 different varieties supported the outcome of the foliar application trial.2 While all red wines contained 3-SH above the sensory detection threshold (60 ng/L, aqueous ethanol), no wines were observed to contain detectable concentrations of 3-SHA. As such, the acetylation of 3-SH to 3-SHA in red wine fermentations appears to be extremely limited.

Lastly, 3-SH and/or 3-SHA were spiked into four different varieties of red wine to understand the impact on sensory attributes.2 Traditionally lighter varieties (Pinot Noir and Grenache) had increased ‘red fruit’ and ‘lolly’ ratings at low concentrations of 3-SH and 3-SHA but changed to ‘tropical’ at higher concentrations. For Cabernet Sauvignon, 3-SH and 3-SHA additions resulted in increases to ‘blackcurrant’ and ‘tropical’ attributes, whereas Shiraz additions of 3-SH resulted in ‘sweaty’ and ‘tropical’ descriptors.

The ‘tropical’ thiol, 3-SH, was ubiquitous in Australian red wines although the acetylation to 3-SHA was not commonly observed. The impact of these thiols in red wines differed by variety, and their presence was increased by vineyard foliar application treatments. As such, vineyard management practises might hold the key to avoiding undesirable expressions of ‘tropical’ characters in red wine.

 

1. Cordente, A. G.; Curtin, C. D.; Solomon, M.; Kulcsar, A. C.; Watson, F.; Pisaniello, L.; Schmidt, S. A.; Espinase Nandorfy, D. Modulation of volatile thiol release during fermentation of red musts by wine yeast. Processes 2022, 10 (3), 502.
2. Hixson, J.; Bilogrevic, E.; Capone, D.; Nandorfy, D. E.; Francis, L.; Petrie, P.; Solomon, M.; Krstic, M. AWRI report: Enhancing tropical fruit flavour in Chardonnay and Shiraz through foliar nutrient sprays. Wine & Vitic. J. 2020, 35 (3), 30-33. 
3. Siebert, T.; Francis, L.; Pisaniello, L.; Melzer, S.; Bey, L.; Watson, F.; Espinase Nandorfy, D.; Cordente, T. Do varietal thiols matter in red wine? AWRI Tech. Rev. 2019, 243, 10-15.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Tracey Siebert1, Mark Solomon1, Lisa Pisaniello1, Damian Espinase Nandorfy1,2, Eleanor Bilogrevic1, Flynn Wat-Son1, Toni Cordente1, Leigh Francis1, Josh Hixson1

1. The Australian Wine Research Institute, Waite Precinct, Hartley Grove cnr Paratoo Road, Urrbrae 5064, Australia.
2. CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia.

Contact the author*

Keywords

red wine, ‘tropical’ aroma, thiols, sensory

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EVALUATION OF A SEAWEED EXTRACT OF RUGULOPTERYX OKAMURAE AGAINST ERYSIPHE NECATOR IN GRAPEVINE

Powdery mildew, caused by Erysiphe necator, is a widespread disease that causes high economical losses in viticulture. The main strategy to control the disease is the recurrent application of sulphur based phytochemical compounds. However, in order to reduce their accumulation in the environment and promote the sustainability of the sector, the European Commission has applied restrictions to the number of pesticide treatments and the maximum quantity of fungicides to be applied in viticulture. Seaweeds, in particular macroalgae, are marine resources rich in sulphated polysaccharides with bio-protective potential for the plant, representing an environmentally-friendly alternative approach for sustainable wine production.

FOURIER TRANSFORM INFRARED SPECTROSCOPY IN MONITORING THE WINE PRODUCTION

The complexity of the wine matrix makes the monitoring of the winemaking process crucial. Fourier Transform Infrared Spectroscopy (FTIR) along with chemometrics is considered an effective analytical tool combining good accuracy, robustness, high sample throughput, and “green character”. Portable and non-portable FTIR devices are already used by the wine industry for routine analysis. However, the analytical calibrations need to be enriched, and some others are still waiting to be thoroughly developed.

SENSORY EVALUATION OF WINE AROMA: SHOULD COLOR-DRIVEN DESCRIPTORS BE USED?

The vocabulary used to describe wine aroma is commonly organized according to color, raising the question of whether they reflect the reality of olfactory perception. Previous studies have assumed this convention of color-aroma matching, and have investigated color’s influence on the perception of aroma only in dyed white wine or in red wine from particular places of origin. Here 48 white and red varietal wines from around the world were evaluated in black glasses then in clear glasses by a panel of wine experts, who gave intensity ratings for aroma attributes commonly used by wine professionals. In black glasses, aromas conventionally associated with white wine were perceived in the red wines, and vice versa.

WINE WITHOUT ADDED SO₂: OXYGEN IMPACT AND EVOLUTION ON THE POLYPHENOLIC COMPOSITION DURING RED WINE AGING

SO₂ play a major role in the stability and wine during storage. Nowadays, the reduction of chemical input during red winemaking and especially the removing SO₂ is a growing expectation from the consumers. Winemaking without SO₂ is a big challenge for the winemakers since the lack of SO₂ affects directly the wine chemical evolution such as the phenolic compounds as well as its microbiological stability.

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations.