terclim by ICS banner
IVES 9 IVES Conference Series 9 ‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Abstract

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.

First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).

Secondly, a survey of over 100 commercial Australian red wines across 10 different varieties supported the outcome of the foliar application trial.2 While all red wines contained 3-SH above the sensory detection threshold (60 ng/L, aqueous ethanol), no wines were observed to contain detectable concentrations of 3-SHA. As such, the acetylation of 3-SH to 3-SHA in red wine fermentations appears to be extremely limited.

Lastly, 3-SH and/or 3-SHA were spiked into four different varieties of red wine to understand the impact on sensory attributes.2 Traditionally lighter varieties (Pinot Noir and Grenache) had increased ‘red fruit’ and ‘lolly’ ratings at low concentrations of 3-SH and 3-SHA but changed to ‘tropical’ at higher concentrations. For Cabernet Sauvignon, 3-SH and 3-SHA additions resulted in increases to ‘blackcurrant’ and ‘tropical’ attributes, whereas Shiraz additions of 3-SH resulted in ‘sweaty’ and ‘tropical’ descriptors.

The ‘tropical’ thiol, 3-SH, was ubiquitous in Australian red wines although the acetylation to 3-SHA was not commonly observed. The impact of these thiols in red wines differed by variety, and their presence was increased by vineyard foliar application treatments. As such, vineyard management practises might hold the key to avoiding undesirable expressions of ‘tropical’ characters in red wine.

 

1. Cordente, A. G.; Curtin, C. D.; Solomon, M.; Kulcsar, A. C.; Watson, F.; Pisaniello, L.; Schmidt, S. A.; Espinase Nandorfy, D. Modulation of volatile thiol release during fermentation of red musts by wine yeast. Processes 2022, 10 (3), 502.
2. Hixson, J.; Bilogrevic, E.; Capone, D.; Nandorfy, D. E.; Francis, L.; Petrie, P.; Solomon, M.; Krstic, M. AWRI report: Enhancing tropical fruit flavour in Chardonnay and Shiraz through foliar nutrient sprays. Wine & Vitic. J. 2020, 35 (3), 30-33. 
3. Siebert, T.; Francis, L.; Pisaniello, L.; Melzer, S.; Bey, L.; Watson, F.; Espinase Nandorfy, D.; Cordente, T. Do varietal thiols matter in red wine? AWRI Tech. Rev. 2019, 243, 10-15.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Tracey Siebert1, Mark Solomon1, Lisa Pisaniello1, Damian Espinase Nandorfy1,2, Eleanor Bilogrevic1, Flynn Wat-Son1, Toni Cordente1, Leigh Francis1, Josh Hixson1

1. The Australian Wine Research Institute, Waite Precinct, Hartley Grove cnr Paratoo Road, Urrbrae 5064, Australia.
2. CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia.

Contact the author*

Keywords

red wine, ‘tropical’ aroma, thiols, sensory

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.

INSIGHTS ON THE ROLE OF GENES ON AROMA FORMATION OF WINES

Yeast secondary metabolism is a complex network of biochemical pathways and the genetic profile of the yeast carrying out the alcoholic fermentation is obviously important in the formation of the metabolites conferring specific odors to wine. The aim of the present research was to investigate the relative expression of genes involved in flavor compound production in eight different Saccharomyces cerevisiae strains.
Two commercial yeast strains Sc1 (S.cerevisiae x S.bayanus) and Sc2 (S.cerevisiae) and six indigenous S. cerevisiae strains (Sc3, Sc4, Sc5, Sc6, Sc7, Sc8) isolated during spontaneous fermentations were inoculated in Assyrtiko and Vidiano grape must.

METHYL SALICYLATE: A TRENDY COMPOUND MARKER OF ZELEN, A UNIQUE SLOVENIAN VARIETY

The wine market interest for autochthonous varieties, particularly from less known wine regions, has significantly raised in the past few years. In that context, Slovenia, a small country from central Europe with a long winemaking tradition, is getting more and more attention, particularly through its range of unique regional varieties. Among them, Zelen, meaning “green” in Slovene, can only be found in the Vipava valley region, located on the western side of the country, near the border with Italy. When they are young, Zelen wines display very singular aromas reminiscent of rosemary, sage and white fruit. Despite its uniqueness, Zelen wine aromatic typicality is poorly documented in the literature.

AROMA AND SENSORY CHARACTERIZATION OF XINOMAVRO RED WINES FROM DIFFERENT GREEK PROTECTED DESIGNATIONS OF ORIGIN, EFFECT OF TERROIR CHARACTERISTICS

The quality of wines has often been associated with their geographical area of production. The aim of this work was to characterize Protected Designation of Origin (PDO) Xinomavro red wines from different geographical areas of Amyndeon and Naoussa in Northern Greece, elaborated with variables that contribute to their differentiation, such as soil characteristics, altitude, monthly average temperature and rainfall.
Xinomavro fruit parcels from different vineyards within the two PDO zones (5 PDO Naoussa and 6 PDO Amyndeon) were vinified following a standard winemaking process. A total of 25 aroma compounds were quantified using gas chromatography-mass spectrometry (GC-MS) with simultaneous full scan and selected ion monitoring for data recording, and odor activity values (OAVs) were determined.

OENOLOGICAL TANNINS FOR PREVENTING THE LIGHT-STRUCK TASTE IN WHITE AND ROSÉ WINES

The light exposure of wine can be detrimental as a relevant loss of aromas takes place [1] and light-induced reactions can occur. The latter involves riboflavin (RF), a photosensitive compound, that is fully reduced by acquiring two electrons. When the electron-donor is methionine, the light-struck taste (LST) can appear leading to cooked cabbage, onion and garlic odours-like [2]. The use of oenological tannins can limit the appearance of LST in both model wine [3] and white wine [4]. This research aimed to evaluate the impact of certain oenological tannins, selected in a previous study as the most effective against LST [5], in both white and rosé wines.