terclim by ICS banner
IVES 9 IVES Conference Series 9 ASSESSING THE ROLE OF 27 KNOWN BITTER COMPOUNDS IN COMMERCIAL WHITE WINES COMBINING LC-MS QUANTIFICATION AND SENSORY ANALYSIS

ASSESSING THE ROLE OF 27 KNOWN BITTER COMPOUNDS IN COMMERCIAL WHITE WINES COMBINING LC-MS QUANTIFICATION AND SENSORY ANALYSIS

Abstract

The balance between the different flavours of a wine largely determines its perception and appreciation by the consumers. In white wines, sweetness and sourness are usually the two poles balancing the taste properties. The bitter flavour, on the other hand, is frequently associated with a loss of equilibrium and all white wines (dry and sweet, young and aged) are affected.

Several bitter compounds are already well-described in wines. Some are linked to microorganisms as acrolein (Bauer et al., 2010) or oak wood, for example lyoniresinol (Cretin et al., 2015), while others come directly from grapes: mostly phenolic (Hufnagel and Hofmann, 2008) and nitrogen compounds (Roudot-Algaron, 1996). Furthermore, the enhancing role played by ethanol has also been well established (Cretin et al., 2018). The present study aims to determine the influence of twenty-seven known bitter compounds on the taste of various commercial white wines.

Thirty wines have been selected and submitted to sensory analysis by a trained panel. The various intensities of sourness, sweetness and bitterness have been determined for each wine. Jointly, five quantification methods have been developed and validated using liquid chromatography coupled with high resolution mass spectrometry (UHPLC-Exactive, Orbitrap analyzer) in order to determine the amount of the selected bitter compounds.

Potential correlations between the described tastes of the wines and concentrations of bitter molecules have been assessed. For the most relevant compounds, detection thresholds have been updated using the same trained panel, enabling a better understanding of the impact of various compounds.

This study enlightens the role of already known bitter compounds in bitter wine. It is also leading the way to further research as some wine’s taste remain unexplained by the selected compounds, thus confirming the potential presence of still unknown bitter compounds.

 

1. Bauer, R., Cowan, D. A., Crouch, A., 2010. Acrolein in wine : importance of 3-hydroxypropionaldehyde and derivatives in production and detection. J. Agric. Food Chem. 58, 3243-3250.
2. Cretin, B., Sallembien, Q., Sindt, L., Daugey, N., Buffeteau, T., Waffo-Teguo, P., Dubourdieu, D., Marchal, A., 2015. How stereochemistry influences the taste of wine : Isolation, characterization and sensory evaluation of lyoniresinol stereoisomers. Analytica chimica acta. 888, 191-198.
3. Cretin, B., Dubourdieu, D., Marchal, A., 2018. Influence of ethanol content on sweetness and bitterness perception in dry wines. Food science & technology. 87, 61-66.
4. Hufnagel, J.C., Hofmann, T., 2008. Quantitative reconstruction of the nonvolatile sensometabolome of a red wine. J. Agric. Food Chem. 56, 9190-9199.
5. Roudot-Algaron, F., 1996. Le goût des acides aminés, des peptides et des protéines : exemple de peptides sapides dans les hydrolysats de caséines. Lait. 76, 313-348.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Tom Estier1,2 and Axel Marchal1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France

Contact the author*

Keywords

LC-MS quantification, sensory analysis, bitterness, wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.

WINE LEES AS A SOURCE OF NITROGEN FOR OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION PERFORMANCE

Malolactic fermentation (MLF) is a desired process in red and acidic white wines, after alcoholic fermentation (AF), carried out by the lactic acid bacterium (LAB) Oenococcus oeni. The advantages are an increase of pH, microbiological stabilization and organoleptic improvement of the final wine. However, the presence of stress factors such as ethanol, low pH, high total SO2, lack of nutrients and presence of inhibitors, could affect the successful completion of MLF [1]. Changes in amino acid composition and deficiencies in peptides after AF, showed that MLF can be delayed, signaling its importance for bacterial growth and L-malic acid degradation during MLF [2].

SENSORY CHARACTERIZATION OF COGNAC EAUX-DE-VIE AGED IN BARRELS REPRESENTING DIFFERENT TOASTING PROCESS

Cognac is an outstanding french wine spirit appreciated around the world and produced exclusively in the Nouvelle-Aquitaine region, and more precisely in the Cognac area. According to AOC regulations (Appellation D’origine Controlée), the spirit required at least 2 years of continuous ageing in oak barrels to be granted the title of Cognac. The oak wood will import color, structure and organoleptic complexity. The different steps during barrel-making process, such as seasoning and toasting, influence the above quality attributes in both wines and spirits.

FREE TERPENE RESPONSE OF ‘MOSCATO BIANCO’ VARIETY TO GRAPE COLD STORAGE

Temperature control is crucial in wine production, starting from grape harvest to the bottled wine storage. Climate change and global warming affect the timing of grape ripening, and harvesting is often done during hot summer days, influencing berry integrity, secondary metabolites potential, enzyme and oxidation phenomena, and even fermentation kinetics. To curb this phenomenon, pre-fermentative cold storage can help preserve the grapes and possibly increase the concentration of key secondary metabolites. In this study, the effect of grape pre-fermentative cold storage was assessed on the ‘Moscato bianco’ white grape cultivar, known for its varietal terpenes (65% of free terpenes represented by linalool and its derivatives) and widely used in Piedmont (Italy) to produce Asti DOCG wines.

HOW DOES ULTRASOUND TREATMENT AFFECT THE AGEING PROFILE OF AN ITALIAN RED WINE?

Many wine styles require moderate or extended ageing to ensure optimal consumer experience. However, few consumers have the interest or ability to age wine themselves, and holding wine in optimal conditions for extended periods is expensive for producers. A study was conducted on the use of ul-trasound energy on wine, with particular reference to its impact on sensory and chemical profiles. The OIV has authorised the use of ultrasound for processing crushed grapes (must) in Resolution OENO 616-2019, but not yet for finished wine1,2.