terclim by ICS banner
IVES 9 IVES Conference Series 9 ASSESSING THE ROLE OF 27 KNOWN BITTER COMPOUNDS IN COMMERCIAL WHITE WINES COMBINING LC-MS QUANTIFICATION AND SENSORY ANALYSIS

ASSESSING THE ROLE OF 27 KNOWN BITTER COMPOUNDS IN COMMERCIAL WHITE WINES COMBINING LC-MS QUANTIFICATION AND SENSORY ANALYSIS

Abstract

The balance between the different flavours of a wine largely determines its perception and appreciation by the consumers. In white wines, sweetness and sourness are usually the two poles balancing the taste properties. The bitter flavour, on the other hand, is frequently associated with a loss of equilibrium and all white wines (dry and sweet, young and aged) are affected.

Several bitter compounds are already well-described in wines. Some are linked to microorganisms as acrolein (Bauer et al., 2010) or oak wood, for example lyoniresinol (Cretin et al., 2015), while others come directly from grapes: mostly phenolic (Hufnagel and Hofmann, 2008) and nitrogen compounds (Roudot-Algaron, 1996). Furthermore, the enhancing role played by ethanol has also been well established (Cretin et al., 2018). The present study aims to determine the influence of twenty-seven known bitter compounds on the taste of various commercial white wines.

Thirty wines have been selected and submitted to sensory analysis by a trained panel. The various intensities of sourness, sweetness and bitterness have been determined for each wine. Jointly, five quantification methods have been developed and validated using liquid chromatography coupled with high resolution mass spectrometry (UHPLC-Exactive, Orbitrap analyzer) in order to determine the amount of the selected bitter compounds.

Potential correlations between the described tastes of the wines and concentrations of bitter molecules have been assessed. For the most relevant compounds, detection thresholds have been updated using the same trained panel, enabling a better understanding of the impact of various compounds.

This study enlightens the role of already known bitter compounds in bitter wine. It is also leading the way to further research as some wine’s taste remain unexplained by the selected compounds, thus confirming the potential presence of still unknown bitter compounds.

 

1. Bauer, R., Cowan, D. A., Crouch, A., 2010. Acrolein in wine : importance of 3-hydroxypropionaldehyde and derivatives in production and detection. J. Agric. Food Chem. 58, 3243-3250.
2. Cretin, B., Sallembien, Q., Sindt, L., Daugey, N., Buffeteau, T., Waffo-Teguo, P., Dubourdieu, D., Marchal, A., 2015. How stereochemistry influences the taste of wine : Isolation, characterization and sensory evaluation of lyoniresinol stereoisomers. Analytica chimica acta. 888, 191-198.
3. Cretin, B., Dubourdieu, D., Marchal, A., 2018. Influence of ethanol content on sweetness and bitterness perception in dry wines. Food science & technology. 87, 61-66.
4. Hufnagel, J.C., Hofmann, T., 2008. Quantitative reconstruction of the nonvolatile sensometabolome of a red wine. J. Agric. Food Chem. 56, 9190-9199.
5. Roudot-Algaron, F., 1996. Le goût des acides aminés, des peptides et des protéines : exemple de peptides sapides dans les hydrolysats de caséines. Lait. 76, 313-348.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Tom Estier1,2 and Axel Marchal1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France

Contact the author*

Keywords

LC-MS quantification, sensory analysis, bitterness, wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INFLUENCE OF THE THICKNESS OF OAK ALTERNATIVES ON THE COMPOSITION AND QUALITY OF RED WINES

Aging red wines in oak barrels is an expensive and laborious process that can only be applied to wines with a certain added value. For this reason, the use of oak alternatives coupled with micro-oxygenation has progressively increased over recent years, because it can reproduce the processes taking place in the barrels more economically and quickly [1]. Several studies have explored how oak alternatives [2-5] can contribute to wine composition and quality but little is known about the influence of their thickness.

CHARACTERIZATION AND ANTIBACTERIAL ACTIVITY OF A POLYPHENOLIC EXTRACT OBTAINED BY GREEN SUPERCRITICAL CO₂ EXTRACTION FROM RED GRAPE POMACE

Upgrading wine industry solid wastes is considered as one of the main strategies to support the circular economy. Red grape pomaces constitute a rich source of polyphenols, which have been shown to possess antioxidant properties and to provide benefits for human and animal health. The objective of this work was to obtain and characterise polyphenolic extracts from red grape pomaces via green supercritical CO₂ extraction using ethanol as a co-solvent, and to evaluate their antibacterial activity against susceptible and multidrug-resistant Escherichia coli strains of animal intestinal origin.

IMPACT OF MANNOPROTEIN N-GLYCOSYL PHOSPHORYLATION AND BRANCHING ON WINE POLYPHENOL INTERACTIONS WITH YEAST CELL WALLS

Yeast cell walls (CWs) may adsorb wine components with a significant impact on wine quality. When dealing with red wines, this adsorption is mainly related to physicochemical interactions between wine polyphenols and cell wall mannoproteins. However, mannoproteins are a heterogeneous family of complex peptidoglycans including long and highly branched N-linked oligosaccharides and short linear O-linked oligosaccharides, resulting in a huge structural diversity.

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effer-vescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most prestigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].

SENSORY IMPROVEMENT OF DEALCOHOLISED WINES

Interest and willing-ness to buy alcohol-free wines by customers is increasing for several years [1]. Due to the rising relevance of dealcoholised wines it is the objective of this study to contribute to a better understanding of the flavor variation among dealcoholised wines and to explore enological measures, how to improve final quality.
First a range of commercial, alcoholfree white wines were analysed by the holistic sensory method projective mapping, including a question for hedonic acceptance. Based on the combination of a non-target-HS-SPME-GC/MS analysis with sensory analysis we obtained a clustering of the wines into three groups.