terclim by ICS banner
IVES 9 IVES Conference Series 9 ASSESSING THE ROLE OF 27 KNOWN BITTER COMPOUNDS IN COMMERCIAL WHITE WINES COMBINING LC-MS QUANTIFICATION AND SENSORY ANALYSIS

ASSESSING THE ROLE OF 27 KNOWN BITTER COMPOUNDS IN COMMERCIAL WHITE WINES COMBINING LC-MS QUANTIFICATION AND SENSORY ANALYSIS

Abstract

The balance between the different flavours of a wine largely determines its perception and appreciation by the consumers. In white wines, sweetness and sourness are usually the two poles balancing the taste properties. The bitter flavour, on the other hand, is frequently associated with a loss of equilibrium and all white wines (dry and sweet, young and aged) are affected.

Several bitter compounds are already well-described in wines. Some are linked to microorganisms as acrolein (Bauer et al., 2010) or oak wood, for example lyoniresinol (Cretin et al., 2015), while others come directly from grapes: mostly phenolic (Hufnagel and Hofmann, 2008) and nitrogen compounds (Roudot-Algaron, 1996). Furthermore, the enhancing role played by ethanol has also been well established (Cretin et al., 2018). The present study aims to determine the influence of twenty-seven known bitter compounds on the taste of various commercial white wines.

Thirty wines have been selected and submitted to sensory analysis by a trained panel. The various intensities of sourness, sweetness and bitterness have been determined for each wine. Jointly, five quantification methods have been developed and validated using liquid chromatography coupled with high resolution mass spectrometry (UHPLC-Exactive, Orbitrap analyzer) in order to determine the amount of the selected bitter compounds.

Potential correlations between the described tastes of the wines and concentrations of bitter molecules have been assessed. For the most relevant compounds, detection thresholds have been updated using the same trained panel, enabling a better understanding of the impact of various compounds.

This study enlightens the role of already known bitter compounds in bitter wine. It is also leading the way to further research as some wine’s taste remain unexplained by the selected compounds, thus confirming the potential presence of still unknown bitter compounds.

 

1. Bauer, R., Cowan, D. A., Crouch, A., 2010. Acrolein in wine : importance of 3-hydroxypropionaldehyde and derivatives in production and detection. J. Agric. Food Chem. 58, 3243-3250.
2. Cretin, B., Sallembien, Q., Sindt, L., Daugey, N., Buffeteau, T., Waffo-Teguo, P., Dubourdieu, D., Marchal, A., 2015. How stereochemistry influences the taste of wine : Isolation, characterization and sensory evaluation of lyoniresinol stereoisomers. Analytica chimica acta. 888, 191-198.
3. Cretin, B., Dubourdieu, D., Marchal, A., 2018. Influence of ethanol content on sweetness and bitterness perception in dry wines. Food science & technology. 87, 61-66.
4. Hufnagel, J.C., Hofmann, T., 2008. Quantitative reconstruction of the nonvolatile sensometabolome of a red wine. J. Agric. Food Chem. 56, 9190-9199.
5. Roudot-Algaron, F., 1996. Le goût des acides aminés, des peptides et des protéines : exemple de peptides sapides dans les hydrolysats de caséines. Lait. 76, 313-348.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Tom Estier1,2 and Axel Marchal1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France

Contact the author*

Keywords

LC-MS quantification, sensory analysis, bitterness, wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

OTA DEGRADATION BY BACTERIAL LACCASEST

Laccases from lactic acid bacteria (LAB) are described as multicopper oxidase enzymes with copper union sites. Among their applications, phenolic compounds’ oxidation and biogenic amines’ degradation, have been described. Besides, the role of LAB in the toxicity reduction of ochratoxin A (OTA) has been reported (Fuchs et al., 2008; Luz et al., 2018). Fungal laccases, but not bacterial laccases, have been screened for OTA and mycotoxins’ degradation (Loi et al., 2018). OTA is a mycotoxin produced by some fungal species, such as Penicillium and Aspergillus sp., which infect grape bunches used for winemaking.

FLAVONOID POTENTIAL OF MINORITY RED GRAPE VARIETIES

The alteration in the rainfall pattern and the increase in the temperatures associated to global climate change are already affecting wine production in many viticultural regions all around the world (1). In fact, grapes are nowadays ripening earlier from a technological point of view than in the past, but they are not necessarily mature from a phenolic point of view. Consequently, the wines made from these grapes can be unbalanced or show high alcohol content. Dramatic shifts in viticultural areas are currently being projected for the future (2).

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.

EFFECTS OF DIFFERENT PRUNING TYPES ON CHARENTE UGNI BLANC GRAPE AND WINE QUALITY

Since the use of sodium arsenite was banned in 2001, Grapevine Trunk Diseases (GTDs) have become even more widespread increasing (1).To avoid pathogen entry, pruning, an age-old practice, is increa- singly coming to the fore. As the vine is a liana (2), any excessive woody proliferation has to be stopped. This can preserve grapevine life, provided it does not damage the diaphragm.

AROMA AND SENSORY CHARACTERIZATION OF XINOMAVRO RED WINES FROM DIFFERENT GREEK PROTECTED DESIGNATIONS OF ORIGIN, EFFECT OF TERROIR CHARACTERISTICS

The quality of wines has often been associated with their geographical area of production. The aim of this work was to characterize Protected Designation of Origin (PDO) Xinomavro red wines from different geographical areas of Amyndeon and Naoussa in Northern Greece, elaborated with variables that contribute to their differentiation, such as soil characteristics, altitude, monthly average temperature and rainfall.
Xinomavro fruit parcels from different vineyards within the two PDO zones (5 PDO Naoussa and 6 PDO Amyndeon) were vinified following a standard winemaking process. A total of 25 aroma compounds were quantified using gas chromatography-mass spectrometry (GC-MS) with simultaneous full scan and selected ion monitoring for data recording, and odor activity values (OAVs) were determined.