terclim by ICS banner
IVES 9 IVES Conference Series 9 VOLATILE COMPOSITION OF WINES USING A GC/TOFMS: HS-SPME VS MICRO LLE AS SAMPLE PREPARATION METHODOLOGY

VOLATILE COMPOSITION OF WINES USING A GC/TOFMS: HS-SPME VS MICRO LLE AS SAMPLE PREPARATION METHODOLOGY

Abstract

Wine aroma analysis can be done by sensorial or instrumental analysis, the latter involving several methodologies based on olfactometric detection, electronic noses or gas chromatography. Gas Chromato-graphy has been widely used for the study of the volatile composition of wines and depending on the detection system coupled to the chromatographic system, quantification and identification of individual compounds can be achieved.

Prior to the chromatography, a sample preparation step is almost always required, but unfortunately there is no extraction procedure that can aid in the detection of the wide range of volatile compounds that exists in a wine sample. Wine volatile profile is characterized to have thousands of compounds with varying chemical properties, like molecular weight, structure, polarity and molecular structures. Moreover, they exist in a wide range of concentration, which, sometimes implies that a pre-concentration step is also required, if the ones existing in very low concentrations are of interest. As far as sample preparation methods for the analysis of wine aroma concerns, one can found thousands of bibliographic references, but the most used ones are probably the liquid-liquid extraction (LLE) and the solid-phase microextraction (SPME). Extensive reviews on the different sample preparation methods that has been used for wine analysis, along with each one advantages and drawbacks, has already received researcher’s attention (Costa Freitas et al, 2012)

In light of the above, this work intents to discuss the use of two different sample preparation methods to quantify and identify volatile compounds in wines.

Two sample preparation methods were compared: a micro liquid-liquid extraction with 500mL of dichloromethane (based on Vilanova et al, 2010) and a HS-SPME (based on Pereira et al 2021). Chromatographic method was the same for both sample preparation method.

The number of compounds identified by HS-SPME was higher than the ones identified by micro-LLE. 26 compounds were identified in wines by both sample preparation methods. Since the majority of com-pounds identified by each sample preparation methodologies are different, choose to do one or another, or even both, should be taken into consideration when the goal is to go deep on volatile composition of wines.

 

1. M. Costa Freitas; M. D. R. Gomes da Silva; M. J. Cabrita (2012) “Sampling and sample preparation techniques for the determination of volatile components in grape juice, wine and alcoholic beverages” In Comprehensive Sampling and Sample Preparation. Volume 4, Pawliszyn J., Mondello L., Dugo P. Eds; Elsevier, Academic Press: Oxford, UK, pp 27–41, 2012. ISBN: 9780123813732
2. Singleton, V. e Rossi, J. (1965) Colorimetry of Total Phenolic Compounds with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticultura, 16, 144-158.
3. Mar Vilanova, Zlatina Genisheva, Antón Masa, José Maria Oliveira (2010). Correlation between volatile composition and sensory properties in Spanish Albariño wines. Microchemical Journal, 95, 240-246.
4. Pereira, C., Mendes, D., Dias, T., Garcia, R., da Silva, M. and Cabrita, M., 2021. Revealing the yeast modulation potential on amino acid composition and volatile profile of Arinto white wines by a combined chromatographic-based approach. Journal of Chromatography A, 1641, p.461991.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Nuno Martins¹, Maria João Cabrita1,2 Raquel Garcia1,2

1. MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainabi-lity Institute, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
2. Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal

Contact the author*

Keywords

red wine, volatiles, sample preparation, GC/TOFMS

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

Enzymatic browning (BE) of must is caused by polyphenol oxidases (PPOs), tyrosinase and laccase. Both PPOs can oxidize diphenols such as hydroxycinnamic acids (HA) to quinones, which can later polymerize to form melanins [1], which are responsible of BE in white wines and of oxidasic haze in red wines. SO₂ is the main tool used to protect must from BE thanks to its capacity to inhibit PPOs [2]. However, the current trend in winemaking is to reduce and even eliminate this unfriendly additive. Among the different possible alternatives for protecting must against BE, the inoculation with a selected Metschnikowia pulcherrima MP1 is without any doubt one of the most promising ones.

NEW INSIGHTS INTO THE EFFECT OF TORULASPORA DELBRUECKII/SACCHAROMYCES CEREVISIAE INOCULATION STRATEGY ON MALOLACTIC FERMENTATION PERFORMANCE

Winemaking is influenced by micro-organisms, which are largely responsible for the quality of the product. In this context, Non-Saccharomyces and Saccharomyces species are of great importance not only because it influences the development of alcoholic fermentation (AF) but also on the achievement of malolactic fermentation (MLF). Among these yeasts, Torulaspora delbrueckii allows in sequential inoculation with strains of S. cerevisiae shorter MLF realizations [5] . Little information is available on the temporal effect of the presence of T. delbrueckii on (i) the evolution of AF and (ii) the MLF performance.

INFLUENCE OF THE NITROGEN / LIPIDS RATIO OF MUSTS ON THE REVELATION OF AROMATIC COMPOUNDS IN SAUVIGNON BLANC WINE

Production of volatile compounds by yeast is known to be modulated by must nitrogen. Nevertheless, various parameter of must quality have an impact on yeast fermentation. In this study we propose to evaluate the impact of nitrogen / lipids balance on a Sauvignon Blanc grape juice (Val de Loire).
Must was prepared from the same grapes at pilot scale. Three modalities were carried out: direct pressing, direct pressing with a pre-fermentation cold stabulation and pellicular maceration before pressing.

STATISTICAL COMPARISON OF GROWTH PARAMETERS OF NINE BIOPROTECTION STRAINS IMPLEMENTED ON ARTIFICIALLY CONTAMINATED SYNTHETIC MUST

In recent years, consumer demand for products without chemical additives increased, becoming a priority for the wine sector. SO₂ is widely used for its multiple properties including antiseptics, antioxidants and antioxidasics and the strategy of bioprotection in winemaking represents now an alternative to this chemical additive. In oenology, results have highlighted the interest of bioprotection to limit the development of microorganisms like Hanseniaspora uvarum and thus reduce the doses of sulphite. Indeed, this species is considered because of its acetic acid and methyl butyl acetate production, the latter can cover the varietal character of wines.

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.