terclim by ICS banner
IVES 9 IVES Conference Series 9 WHITE WINES OXIDATIVE STABILITY: A 2-VINTAGE STUDY OF CHARDONNAY CHAMPAGNE BASE WINES AGED ON LEES IN BARRELS

WHITE WINES OXIDATIVE STABILITY: A 2-VINTAGE STUDY OF CHARDONNAY CHAMPAGNE BASE WINES AGED ON LEES IN BARRELS

Abstract

Ultra-premium champagne wines are characterized by a long stay on laths. The goal of the winemaker is to use all possible oenological techniques to keep the aromatic freshness of the future products. To that purpose, some champagne base wines can be aged on lees in oak barrels. However, if it is now acknowledged that such ageing practices contribute to the oxidative stability of dry white wines, no study has been done on Chardonnay champagne base wines designed for a long ageing on laths [1]. The antioxidant capacity of Chardonnay champagne base wines was measured by DPPH assay during barrel ageing for two successive vintages, 2020 and 2021. Regardless of the vintage, ageing in new oak barrels significantly improves the Chardonnay champagne base wines oxidative stability. Oak wood ellagitanins followed a linear extraction profile during barrel ageing on champagne base wines similar to that already reported for dry Chardonnay wines [2]. Moreover, Chardonnay champagne base wines aged in new barrels preserved at the end of ageing and important number of S-N containing compounds, which in addition to the known ellagitanins revealed wines better antioxidant stability [3]. A metabolomic approach based on an untargeted UHPLC-Q-ToF-MS/MS analysis allowed a clear discrimination of champagne base wines according to the ageing period on lees in new oak barrels undependably to the vintage. This result is very valuable for the future perspectives while it indicates that champagne base wines chemical composition is dominated essentially from the barrel ageing in new oak barrels than the vintage.

 

1. Romanet, R., Gougeon, R. D., & Nikolantonaki, M. (2023). White Wine Antioxidant Metabolome : Definition and Dynamic Behavior during Aging on Lees in Oak Barrels. Antioxidants, 12(2), 395. https://doi.org/10.3390/antiox12020395
2. Nikolantonaki, M., Daoud, S., Noret, L., Coelho, C., Badet-Murat, M.-L., Schmitt-Kopplin, P., & Gougeon, R. D. (2019). Impact of Oak Wood Barrel Tannin Potential and Toasting on White Wine Antioxidant sStability. Journal of Agricultural and Food Chemistry, 67(30), 8402–8410. https://doi.org/10.1021/acs.jafc.9b00517
3. Romanet, R., Bahut, F., Nikolantonaki, M., & Gougeon, R. D. (2020). Molecular Characterization of White Wines Antioxidant Metabolome by Ultra High Performance Liquid Chromatography High-Resolution Mass Spectrometry. Antioxidants, 9(2), 115. https://doi.org/10.3390/antiox9020115

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Charlotte Maxe1,2, Rémy Romanet2,3, Kévin Billet², Laurence Noret², Michel Parisot¹, Maria Nikolantonaki², Régis D. Gougeon2,3

1. Société de Distribution de l’Union Auboise, Hameau de Villeneuve, 10110 Bar-Sur-Seine, France
2. Institut Universitaire de la Vigne et du Vin, UMR PAM Université de Bourgogne/Institut Agro Dijon, Jules Guyot, Rue Claude Ladrey, BP 27877, 21078 Dijon, France
3. DIVVA (Développement Innovation Vigne Vin Aliments) Platform/PAM UMR, IUVV, Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France

Contact the author*

Keywords

Oxidative stability, Chardonnay, Phenolic compounds, Antioxidant metabolome

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

GRAPE SPIRITS FOR PORT WINE PRODUCTION: SCREENING THEIR AROMA PROFILE

Port is a fortified wine, produced from grapes grown in the demarcated Douro region. The fortification process consists in the addition of a grape spirit (77% v/v) to the fermenting juice for fermentation interruption, resulting in remaining residual sugars in the wine and increased alcohol content (19-22%). The approval of grape spirits follows the Appellation (D.O. Port wine) rules1 and it is currently carried out based on analytical control and on sensory evaluation done by the public Institute that upholds the control of the quality of Douro Appellation wines. However, the producers of Port wines would like to have more information about quality markers of grape spirits.

ENRICHMENT OF THE OENOLOGICAL MALDI-TOF/MS PROTEIN SPECTRA DATABASE FOR RELIABLE OENOLOGICAL YEAST AND BACTERIA IDENTIFICATION

The Matrix Assisted Laser Desorption/Ionization–Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology is commonly used in food and medical sector to identify yeast or bacteria species isolated from a nutritive culture media. Since a decade, brewery and oenology industries have been attracted to this method which combines fast analysis times, reliability and low cost of analysis. Briefly, this method is based on the comparison of the MALDI-TOF/MS protein spectra of an isolated colony of yeast or bacteria with those contain in a manufacturer’s reference protein spectra database. Initiated in 2015, the creation of the first oenological mass spectra database has proved to be essential for increase quality of species identification.

EMERGENCE OF INORGANIC PHOSPHONATE RESIDUES IN GRAPEVINE PLANT PARTS, BERRIES AND WINES FROM SOURCES OTHER THAN FOLIAR SPRAYING

Inorganic phosphonates are known to effectively support the control of grapevine downy mildew in vi- ticulture. Their application helps the plant to induce an earlier and more effective pathogen defense. However, inorganic phosphonates have been banned in organic viticulture due to their classification as plant protection products since October 2013. Despite the ban, phosphonate has been recently detected in organic wines.

NEW TREATMENTS FOR TEMPRANILLO WINES BY USING CABERNET SAUVIGNON VINE-SHOOTS AND MICRO-OXYGENATION

Toasted vine-shoots as enological additive represents a promising topic due to their significant effect on wine profile. However, the use of this new enological tool with SEGs varieties different than wine and combined with others winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far, despite this combination could result in wine with high chemical and organoleptic quality.

USING CHECK-ALL-THAT-APPLY (CATA) TO CATEGORIZE WINES: A DECISION-MAKING TOOL FOR WINE SELECTION

Bordeaux is the largest appellation vineyard in France. This contrasting vineyard with varied terroirs offers all styles of wine, resulting from the blending of several grape varieties. If these different profiles make the renown of Bordeaux wines, it can appear as a constraint when the aim is to study Bordeaux wines in their diversity. The selection of a representative sample can be performed by a sensory analysis carried out by trained panelists or by wine professionals, which can take several forms: consensus among experts, conventional descriptive analysis, typicality or quality evaluation. However, because of time, economic, and logistical constraints, these methods have limited applications. As an alternative to classical descriptive analysis, more intuitive methods that do not require training have been proposed recently to describe wines using an expert panel such as Napping, Free Choice or Flash Profiling, CATA or RATA.