terclim by ICS banner
IVES 9 IVES Conference Series 9 WHITE WINES OXIDATIVE STABILITY: A 2-VINTAGE STUDY OF CHARDONNAY CHAMPAGNE BASE WINES AGED ON LEES IN BARRELS

WHITE WINES OXIDATIVE STABILITY: A 2-VINTAGE STUDY OF CHARDONNAY CHAMPAGNE BASE WINES AGED ON LEES IN BARRELS

Abstract

Ultra-premium champagne wines are characterized by a long stay on laths. The goal of the winemaker is to use all possible oenological techniques to keep the aromatic freshness of the future products. To that purpose, some champagne base wines can be aged on lees in oak barrels. However, if it is now acknowledged that such ageing practices contribute to the oxidative stability of dry white wines, no study has been done on Chardonnay champagne base wines designed for a long ageing on laths [1]. The antioxidant capacity of Chardonnay champagne base wines was measured by DPPH assay during barrel ageing for two successive vintages, 2020 and 2021. Regardless of the vintage, ageing in new oak barrels significantly improves the Chardonnay champagne base wines oxidative stability. Oak wood ellagitanins followed a linear extraction profile during barrel ageing on champagne base wines similar to that already reported for dry Chardonnay wines [2]. Moreover, Chardonnay champagne base wines aged in new barrels preserved at the end of ageing and important number of S-N containing compounds, which in addition to the known ellagitanins revealed wines better antioxidant stability [3]. A metabolomic approach based on an untargeted UHPLC-Q-ToF-MS/MS analysis allowed a clear discrimination of champagne base wines according to the ageing period on lees in new oak barrels undependably to the vintage. This result is very valuable for the future perspectives while it indicates that champagne base wines chemical composition is dominated essentially from the barrel ageing in new oak barrels than the vintage.

 

1. Romanet, R., Gougeon, R. D., & Nikolantonaki, M. (2023). White Wine Antioxidant Metabolome : Definition and Dynamic Behavior during Aging on Lees in Oak Barrels. Antioxidants, 12(2), 395. https://doi.org/10.3390/antiox12020395
2. Nikolantonaki, M., Daoud, S., Noret, L., Coelho, C., Badet-Murat, M.-L., Schmitt-Kopplin, P., & Gougeon, R. D. (2019). Impact of Oak Wood Barrel Tannin Potential and Toasting on White Wine Antioxidant sStability. Journal of Agricultural and Food Chemistry, 67(30), 8402–8410. https://doi.org/10.1021/acs.jafc.9b00517
3. Romanet, R., Bahut, F., Nikolantonaki, M., & Gougeon, R. D. (2020). Molecular Characterization of White Wines Antioxidant Metabolome by Ultra High Performance Liquid Chromatography High-Resolution Mass Spectrometry. Antioxidants, 9(2), 115. https://doi.org/10.3390/antiox9020115

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Charlotte Maxe1,2, Rémy Romanet2,3, Kévin Billet², Laurence Noret², Michel Parisot¹, Maria Nikolantonaki², Régis D. Gougeon2,3

1. Société de Distribution de l’Union Auboise, Hameau de Villeneuve, 10110 Bar-Sur-Seine, France
2. Institut Universitaire de la Vigne et du Vin, UMR PAM Université de Bourgogne/Institut Agro Dijon, Jules Guyot, Rue Claude Ladrey, BP 27877, 21078 Dijon, France
3. DIVVA (Développement Innovation Vigne Vin Aliments) Platform/PAM UMR, IUVV, Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France

Contact the author*

Keywords

Oxidative stability, Chardonnay, Phenolic compounds, Antioxidant metabolome

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

Influence of agrophotovoltaic on vine and must in a cool climate

The current energy crisis means that interest in agrophotovoltaics has increased significantly. The reason behind this is that the system aims to combine agricultural production with energy production. During the three-year period from 2020 to 2022, the effects of photovoltaic panels on the vine, the yield and the quality of the must were studied in Walenstadt in northern Switzerland, an area with a cool, humid climate. 65 Pinot noir vines were planted in the 160m2 study area. Because of the large edge effects, only 3 repetitions with 4 vines each could be created. A significantly lower leaf infestation by Plasmopara viticola was observed among the panels in each of the three years.

YEAST LEES OBTAINED AFTER STARMERELLA BACILLARIS FERMENTATION AS A SOURCE OF POTENTIAL COMPOUNDS TO IMPROVE SUSTAINABILITY IN WINE- MAKING

The yeast residue left over after wine-making, known as wine yeast lees, is a source of various compounds that are of interest for wine and food industry. In winemaking, yeast-derived glycocompounds and proteins represent an example of circular economy approach since they have been proven to reduce the need for bentonite and animal-based fining agents. This leads to a reduced environmental impact in the stabilization and fining processes in winemaking. (de Iseppi et al., 2020, 2021).

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.

INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

The use of pesticides for vine growing is responsible for generating an important volume of wastewater. In 2009, 13 processes were authorized for wastewater treatment but they are expensive and the toxicological impact of the secondary metabolites that are formed is not clearly established. Recently photodecomposition processes have been studied and proved an effectiveness to degrade pesticides and to modify their structures (Maheswari et al., 2010, Lassale et al., 2014). In this field, Pulsed Light (PL) seems to be an interesting and efficient process (Baranda et al., 2017). Therefore, the aim of this work was to investigate the PL technology as a new process for the degradation of pesticides.

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]).