terclim by ICS banner
IVES 9 IVES Conference Series 9 WHITE WINES OXIDATIVE STABILITY: A 2-VINTAGE STUDY OF CHARDONNAY CHAMPAGNE BASE WINES AGED ON LEES IN BARRELS

WHITE WINES OXIDATIVE STABILITY: A 2-VINTAGE STUDY OF CHARDONNAY CHAMPAGNE BASE WINES AGED ON LEES IN BARRELS

Abstract

Ultra-premium champagne wines are characterized by a long stay on laths. The goal of the winemaker is to use all possible oenological techniques to keep the aromatic freshness of the future products. To that purpose, some champagne base wines can be aged on lees in oak barrels. However, if it is now acknowledged that such ageing practices contribute to the oxidative stability of dry white wines, no study has been done on Chardonnay champagne base wines designed for a long ageing on laths [1]. The antioxidant capacity of Chardonnay champagne base wines was measured by DPPH assay during barrel ageing for two successive vintages, 2020 and 2021. Regardless of the vintage, ageing in new oak barrels significantly improves the Chardonnay champagne base wines oxidative stability. Oak wood ellagitanins followed a linear extraction profile during barrel ageing on champagne base wines similar to that already reported for dry Chardonnay wines [2]. Moreover, Chardonnay champagne base wines aged in new barrels preserved at the end of ageing and important number of S-N containing compounds, which in addition to the known ellagitanins revealed wines better antioxidant stability [3]. A metabolomic approach based on an untargeted UHPLC-Q-ToF-MS/MS analysis allowed a clear discrimination of champagne base wines according to the ageing period on lees in new oak barrels undependably to the vintage. This result is very valuable for the future perspectives while it indicates that champagne base wines chemical composition is dominated essentially from the barrel ageing in new oak barrels than the vintage.

 

1. Romanet, R., Gougeon, R. D., & Nikolantonaki, M. (2023). White Wine Antioxidant Metabolome : Definition and Dynamic Behavior during Aging on Lees in Oak Barrels. Antioxidants, 12(2), 395. https://doi.org/10.3390/antiox12020395
2. Nikolantonaki, M., Daoud, S., Noret, L., Coelho, C., Badet-Murat, M.-L., Schmitt-Kopplin, P., & Gougeon, R. D. (2019). Impact of Oak Wood Barrel Tannin Potential and Toasting on White Wine Antioxidant sStability. Journal of Agricultural and Food Chemistry, 67(30), 8402–8410. https://doi.org/10.1021/acs.jafc.9b00517
3. Romanet, R., Bahut, F., Nikolantonaki, M., & Gougeon, R. D. (2020). Molecular Characterization of White Wines Antioxidant Metabolome by Ultra High Performance Liquid Chromatography High-Resolution Mass Spectrometry. Antioxidants, 9(2), 115. https://doi.org/10.3390/antiox9020115

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Charlotte Maxe1,2, Rémy Romanet2,3, Kévin Billet², Laurence Noret², Michel Parisot¹, Maria Nikolantonaki², Régis D. Gougeon2,3

1. Société de Distribution de l’Union Auboise, Hameau de Villeneuve, 10110 Bar-Sur-Seine, France
2. Institut Universitaire de la Vigne et du Vin, UMR PAM Université de Bourgogne/Institut Agro Dijon, Jules Guyot, Rue Claude Ladrey, BP 27877, 21078 Dijon, France
3. DIVVA (Développement Innovation Vigne Vin Aliments) Platform/PAM UMR, IUVV, Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France

Contact the author*

Keywords

Oxidative stability, Chardonnay, Phenolic compounds, Antioxidant metabolome

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

THE INFLUENCE OF COMMERCIAL SACCHAROMYCES CEREVISIAE ON THE POLY-SACCHARIDES AND OTHER CHEMICAL PROFILES OF NEW ZEALAND PINOT NOIR WINES

Wine polysaccharides (PS) play an important role in balancing mouthfeel and stability of wine and even influence aroma volatility. Despite this, there is limited research into the effect of winemaking additives on the polysaccharide profile and other macromolecules of New Zealand (NZ) Pinot noir wine. In this study the influence of a selection of commercial S. cerevisiae strains on the chemical profile, including polysaccharides, of New Zealand Pinot noir (PN) wine was investigated. Research scale PN fermentations using five strains of commercially available S. cerevisiae (Lalvin EC1118 and RC212, Levuline BRG YSEO, Viallate Ferm R71 and R82) were undertaken. PS were qualified and quantified using HPLC-RID.

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: EVOLUTION IN BOTTLED WINE

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors. The impact on wine aroma is mainly attributed to volatile phenols, while in-mouth hydrolysis of glycosylated forms may be responsible for long-lasting “ashy” aftertastes (1).

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]).

A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

Oenococcus oeni is the main lactic acid bacteria (LAB) species which conducts the malolactic fermentation (MLF) in wine. During MLF, O. oeni converts malic acid into lactic acid, which modulates wine aroma composition leading to better balanced organoleptic properties. O. oeni is a highly specialized species only detected in environments containing alcohol such as wine, cider or kombucha. Genome analysis of more than 240 strains showed that they form at least 4 main phylogenetic lineages and several sublineages, which are associated with different beverages or types of wines.

EVALUATION OF THE OENOLOGICAL POTENTIAL OF NEW RESISTANT VARIETIES MEETING TYPICAL BORDEAUX CHARACTERISTICS

Varietal innovation is a major lever for meeting the challenges of the agro-ecological transition of vi-neyards and their adaptation to climate change. To date, selection work has already begun in the Bordeaux region through the Newvine project. The aim of this project is to create new vine varieties with resistance to mildew and powdery mildew, adapted to the climatic conditions of the Bordeaux region and enabling the production of wines that are in line with consumer tastes and the expected typicity of Bordeaux wines.