terclim by ICS banner
IVES 9 IVES Conference Series 9 A NEW STRATEGY AND METHODOLOGY FOR THE CHARACTERIZATION OF POLYPHENOLS IN FINING PRECIPITATE

A NEW STRATEGY AND METHODOLOGY FOR THE CHARACTERIZATION OF POLYPHENOLS IN FINING PRECIPITATE

Abstract

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries. Fining is an important winemaking step just before bottling which has an impact on wine stabi-lization and clarification. Most the time, fining agent are animal or vegetal protein while some of them can be synthetic polymer like PVPP or natural origin like bentonite. The aim of this study was better understand colloidals phenomenons involved in fining process and determine how polyphenols content and composition are impact by finning.

Different type and composition of fining agent were used during the investigation on each wine. Some of them were based on animal proteins, vegetal proteins, PVPP or bentonite alone while some mix with PVPP and vegetal proteins, PVPP and animal protein, and a mix with PVPP, vegetal proteins and bentonite were also used. On the wine before and after fining monomeric and total anthocyanins, monomeric, dimeric and total tannins, mDP (mean degree of polymerization), flavonol and phenolic acids content were measured. However in order to determine more precisely the content and composition of polyphenol lost during fining, a new strategy have been develop based on the re-solubilisation of the fining precipitate using some organic solvent.

For these experiments, this new method highlight some drastic differences between fining agents. Indeed, depending of the fining agent the amount and the composition of the polyphenols present in the fining precipitate change. For example, some fining agent don’t remove anthocyanins while some other precipitate mainly the p-coumarolylated anthocyanins. Moreover, important differences are also observed for condensed tannins according to the nature of the fining agent. Indeed, fining agent without PVPP were able to precipitate monomeric or dimeric condensed tannins. Moreover, some fining agent are more selective of oligomeric tannins while some has tendency to precipitate tannins with higher mDP.

This new methodology allow a more precise and clear identification of the polyphenol precipitated by fining agent and will help to better understand impact of the fining the organoleptic properties of the wine. Similarly, a better characterization of the fining precipitate will also help better understanding the colloidal structure of the wine.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Gauthier Lagarde¹, Manon ferreira¹, Sandra Vanbrabant¹, Soizic Lacampagne¹, Arnaud Massot², Virginie Moine², Pierre-Louis Teissedre¹ and Michael Jourdes*,1

1. Université de Bordeaux, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366 OENOLOGIE, ISVV, 33140 – Villenave d’Ornon
2. Biolaffort, 11 Rue Aristide Berges, 33270 Floirac, Gironde, France

Contact the author*

Keywords

Fining, Precipitate, Condensed tannins, Anthocyanin

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ADDITION OF OAK WOOD ALTERNATIVE PRODUCTS: QUALITATIVE AND SENSORIAL EFFECTS FOR A WHITE WINE OF ALIGOTE

Wines matured in contact with wood are extremely popular with consumers all over the world. Oak wood allows the organoleptic characteristics of wine to be modified. Wines are enriched with volatile and non-volatile compounds extracted from the wood. The aromas extracted from oak wood contribute to the construction of the wine’s aromatic profile and the main polyphenols extracted can modify taste perceptions such as astringency and bitterness. All the compounds extracted from the wood thus contribute to the balance and quality of the wines.

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.

DETERMINATION OF MINERAL COMPOSITION IN CV. TERAN (VITIS VINIFERA L.) RED WINE AFFECTED BY PRE-FERMENTATIVE MASH COOLING, HEATING, SAIGNÉE TECHNIQUE AND PROLONGED POST-FERMENTATIVE MACERATIONS

This study aimed to determine mineral composition in red wine obtained from cv. Teran (Vitis vinifera L.), autochtonous Croatian grape variety. Six different vinification treatments, including the control treatment (7-day standard maceration), were performed to study the effects of: 48-hour pre-fermentative mash cooling (8 °C) followed by prolonged post-fermentative maceration of 13 days (C15), 28 days (C30), and saignée technique (juice runoff) proceeded with prolonged post-fermentative maceration of 13 days (CS15); and effect of 48-hour heating (50 °C) followed by prolonged post-fermentative maceration of 13 days (H15) and 28 days (H30) on macro- and microelements in wine.

CHARACTERIZATION AND IDENTIFICATION OF YEAST BIOACTIVE PEPTIDES RELEASED DURING FERMENTATION AND AUTOLYSIS IN MODEL WINE

Aging wine on lees is a consolidated practice during which some yeast components (e.g., polysaccharides,
proteins, peptides) are released and solubilized in wine thus, affecting its stability and quality.
Apart from the widely studied mannoproteins, the role of other yeast components in modulating wine
characteristics is still scarce. Wine peptides have been studied for their contribution to taste, antioxidant,
and antihypertensive potentials. However, the peptides detected in wine can be influenced by the
interaction between yeasts and grape components.

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.