terclim by ICS banner
IVES 9 IVES Conference Series 9 A NEW STRATEGY AND METHODOLOGY FOR THE CHARACTERIZATION OF POLYPHENOLS IN FINING PRECIPITATE

A NEW STRATEGY AND METHODOLOGY FOR THE CHARACTERIZATION OF POLYPHENOLS IN FINING PRECIPITATE

Abstract

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries. Fining is an important winemaking step just before bottling which has an impact on wine stabi-lization and clarification. Most the time, fining agent are animal or vegetal protein while some of them can be synthetic polymer like PVPP or natural origin like bentonite. The aim of this study was better understand colloidals phenomenons involved in fining process and determine how polyphenols content and composition are impact by finning.

Different type and composition of fining agent were used during the investigation on each wine. Some of them were based on animal proteins, vegetal proteins, PVPP or bentonite alone while some mix with PVPP and vegetal proteins, PVPP and animal protein, and a mix with PVPP, vegetal proteins and bentonite were also used. On the wine before and after fining monomeric and total anthocyanins, monomeric, dimeric and total tannins, mDP (mean degree of polymerization), flavonol and phenolic acids content were measured. However in order to determine more precisely the content and composition of polyphenol lost during fining, a new strategy have been develop based on the re-solubilisation of the fining precipitate using some organic solvent.

For these experiments, this new method highlight some drastic differences between fining agents. Indeed, depending of the fining agent the amount and the composition of the polyphenols present in the fining precipitate change. For example, some fining agent don’t remove anthocyanins while some other precipitate mainly the p-coumarolylated anthocyanins. Moreover, important differences are also observed for condensed tannins according to the nature of the fining agent. Indeed, fining agent without PVPP were able to precipitate monomeric or dimeric condensed tannins. Moreover, some fining agent are more selective of oligomeric tannins while some has tendency to precipitate tannins with higher mDP.

This new methodology allow a more precise and clear identification of the polyphenol precipitated by fining agent and will help to better understand impact of the fining the organoleptic properties of the wine. Similarly, a better characterization of the fining precipitate will also help better understanding the colloidal structure of the wine.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Gauthier Lagarde¹, Manon ferreira¹, Sandra Vanbrabant¹, Soizic Lacampagne¹, Arnaud Massot², Virginie Moine², Pierre-Louis Teissedre¹ and Michael Jourdes*,1

1. Université de Bordeaux, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366 OENOLOGIE, ISVV, 33140 – Villenave d’Ornon
2. Biolaffort, 11 Rue Aristide Berges, 33270 Floirac, Gironde, France

Contact the author*

Keywords

Fining, Precipitate, Condensed tannins, Anthocyanin

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECTS OF DIFFERENT PRUNING TYPES ON CHARENTE UGNI BLANC GRAPE AND WINE QUALITY

Since the use of sodium arsenite was banned in 2001, Grapevine Trunk Diseases (GTDs) have become even more widespread increasing (1).To avoid pathogen entry, pruning, an age-old practice, is increa- singly coming to the fore. As the vine is a liana (2), any excessive woody proliferation has to be stopped. This can preserve grapevine life, provided it does not damage the diaphragm.

EVALUATION OF A SEAWEED EXTRACT OF RUGULOPTERYX OKAMURAE AGAINST ERYSIPHE NECATOR IN GRAPEVINE

Powdery mildew, caused by Erysiphe necator, is a widespread disease that causes high economical losses in viticulture. The main strategy to control the disease is the recurrent application of sulphur based phytochemical compounds. However, in order to reduce their accumulation in the environment and promote the sustainability of the sector, the European Commission has applied restrictions to the number of pesticide treatments and the maximum quantity of fungicides to be applied in viticulture. Seaweeds, in particular macroalgae, are marine resources rich in sulphated polysaccharides with bio-protective potential for the plant, representing an environmentally-friendly alternative approach for sustainable wine production.

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4

INFLUENCE OF WINEMAKING VARIABLES AND VINEYARD LOCATIONS ON CHEMICAL AND SENSORY PROFILES OF SOUTH TYROLEAN PINOT BLANC

Pinot Blanc, an important grape variety grown in some mountain areas of Northern Italy such as South Tyrol over the last decades, with its cultivation covering 10.3% of the total vineyards, has compatible climatic conditions (e.g. heat requirements) which are normally found in the geographical areas of the mountain viticulture [1,2,3,4]. Climatic changes are hastening the growth of this variety at higher elevations, particularly for the production of high quality wine.

VOLTAMETRIC PROFILING OF RED WINE COMPOSITION DURING MACERATION: A STUDY ON FOUR GRAPE VARIETIES

During red wine vinification, maceration allows the must, and consequently the wine, to be enriched with several compounds that contribute to the creation of the typical organoleptic characteristics of red wines. Among these, extraction of polyphenols (PPs) during maceration is a major process of enological interest.
The purpose of this study was the evaluate the suitability of a rapid analytical approach based in linear sweep voltammetry to monitor PPs extraction during vinification.