terclim by ICS banner
IVES 9 IVES Conference Series 9 A NEW STRATEGY AND METHODOLOGY FOR THE CHARACTERIZATION OF POLYPHENOLS IN FINING PRECIPITATE

A NEW STRATEGY AND METHODOLOGY FOR THE CHARACTERIZATION OF POLYPHENOLS IN FINING PRECIPITATE

Abstract

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries. Fining is an important winemaking step just before bottling which has an impact on wine stabi-lization and clarification. Most the time, fining agent are animal or vegetal protein while some of them can be synthetic polymer like PVPP or natural origin like bentonite. The aim of this study was better understand colloidals phenomenons involved in fining process and determine how polyphenols content and composition are impact by finning.

Different type and composition of fining agent were used during the investigation on each wine. Some of them were based on animal proteins, vegetal proteins, PVPP or bentonite alone while some mix with PVPP and vegetal proteins, PVPP and animal protein, and a mix with PVPP, vegetal proteins and bentonite were also used. On the wine before and after fining monomeric and total anthocyanins, monomeric, dimeric and total tannins, mDP (mean degree of polymerization), flavonol and phenolic acids content were measured. However in order to determine more precisely the content and composition of polyphenol lost during fining, a new strategy have been develop based on the re-solubilisation of the fining precipitate using some organic solvent.

For these experiments, this new method highlight some drastic differences between fining agents. Indeed, depending of the fining agent the amount and the composition of the polyphenols present in the fining precipitate change. For example, some fining agent don’t remove anthocyanins while some other precipitate mainly the p-coumarolylated anthocyanins. Moreover, important differences are also observed for condensed tannins according to the nature of the fining agent. Indeed, fining agent without PVPP were able to precipitate monomeric or dimeric condensed tannins. Moreover, some fining agent are more selective of oligomeric tannins while some has tendency to precipitate tannins with higher mDP.

This new methodology allow a more precise and clear identification of the polyphenol precipitated by fining agent and will help to better understand impact of the fining the organoleptic properties of the wine. Similarly, a better characterization of the fining precipitate will also help better understanding the colloidal structure of the wine.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Gauthier Lagarde¹, Manon ferreira¹, Sandra Vanbrabant¹, Soizic Lacampagne¹, Arnaud Massot², Virginie Moine², Pierre-Louis Teissedre¹ and Michael Jourdes*,1

1. Université de Bordeaux, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366 OENOLOGIE, ISVV, 33140 – Villenave d’Ornon
2. Biolaffort, 11 Rue Aristide Berges, 33270 Floirac, Gironde, France

Contact the author*

Keywords

Fining, Precipitate, Condensed tannins, Anthocyanin

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

USE OF COLD LIQUID STABULATION AS AN OENOLOGICAL TECHNIQUE IN WHITE WINEMAKING: EFFECTS ON PHENOLIC, AROMATIC AND SENSORIAL COMPOSITION

The application of different winemaking techniques helps to modify the basic parameters, phenolic profile, and aroma components influencing the final wine quality. In particular, pre-fermentative processes aim to increase the extraction and preservation of grape native compounds. Among them, cold liquid stabulation (macération sur bourbes) consists in maintaining the grape juice on its lees, in suspended condition at low temperature (0-8 °C) for a variable time (generally from 7 to 21 days). The aim of this work is to apply the cold liquid stabulation on two Italian white grape varieties, Arneis and Cortese, to evaluate the impact on basic parameters, color, polyphenolic compounds (TPI), antioxidant power (DPPH), total polysaccharides, and free and glycosylated volatile compounds (GC-MS analysis) during and after the process.

2-YEARS STUDY ON COMPARISON BETWEEN THE VOLATILE CHEMICAL PROFILE OF TWO DIFFERENT BLENDS FOR THE ENHANCEMENT OF “VALPOLICELLA SUPERIORE”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.From 2019 Valpolicella product regulation has changed the grape proportion of the blend allowing new composition parameters of wines. For this reason, studying the volatile chemical profiles to support wine makers in the effort to produce high quality wines represents a field of great interest.

OTA DEGRADATION BY BACTERIAL LACCASEST

Laccases from lactic acid bacteria (LAB) are described as multicopper oxidase enzymes with copper union sites. Among their applications, phenolic compounds’ oxidation and biogenic amines’ degradation, have been described. Besides, the role of LAB in the toxicity reduction of ochratoxin A (OTA) has been reported (Fuchs et al., 2008; Luz et al., 2018). Fungal laccases, but not bacterial laccases, have been screened for OTA and mycotoxins’ degradation (Loi et al., 2018). OTA is a mycotoxin produced by some fungal species, such as Penicillium and Aspergillus sp., which infect grape bunches used for winemaking.

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4

IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

A lot of work has been done on the impact of Botrytis on the foam of sparkling wines. This work often concerns wines produced in cool regions, where Botrytis is the dominant fungal pathogen. However, in southern countries such as Spain, in particularly hot years such as 2022, the majority fungal pathogen is sometimes Rhizopus. Like Botrytis, Rhizopus is a fungus that produces an aspartic protease.