terclim by ICS banner
IVES 9 IVES Conference Series 9 EUGENOL AS QUALITY MARKER OF WINES AND SPIRITS FROM HYBRID VINES: IMPACT OF DIFFERENT WINEMAKING AND DISTILLATION PROCESSES

EUGENOL AS QUALITY MARKER OF WINES AND SPIRITS FROM HYBRID VINES: IMPACT OF DIFFERENT WINEMAKING AND DISTILLATION PROCESSES

Abstract

Eugenol, widely spread in various plants notably cloves, basil and bay, was identified too in wines from hybrid grapes without contact with oak wood. This aromatic molecule presents a strong spicy note of clove and also antifongic properties. Eugenol was described as an endogenous compound of Baco blanc, from the grapes to the spirits of Armagnac area. Moreover, this compound is a chemical marker of Baco blanc products quality.
Influences of harvest time and different winemaking processes (settling, use of enzymatic preparations, lees content and stock time before distillation) on Baco blanc wine eugenol contents were explored using a two-levels full factorial Design of Experiments (DoEs). Each modality was twice-distilled at the same ABV (Alcohol By Volume) to produce white spirits. Quantified by HS-SPME-GC/MS with a proven methodology, eugenol is particularly concentrated in wines (median content 43 μg/L) and white spirits (me-dian content 124 μg/L) made with Baco blanc cultivar. Eugenol content in wines and spirits were mainly determined (66%) by harvest time: the earlier the harvest date, the higher eugenol concentration in wines (variation from 28 to 126 μg/L) and spirits (variation from 57 to 317 μg/L). This observation was confirmed by measuring the concentration of eugenol in Baco blanc berries during their development. Our results also highlight the fact that the use of β-glucosidase enzymatic preparation after alcoholic fermentation (21% of determination) permits to enhance eugenol levels. At the evidence a bound fraction of eugenol in Baco blanc wines exists. The perspective of identification and evaluation of the eugenol precursor have been operated to improve quality of Baco blanc products. First approaches trends to identify a majority precursor (80% of the bound eugenol). Moreover the use of a full factorial DoE highlighted the key steps of winemaking process that most influence the concentrations of the different forms of eugenol. Sensory analyses carried out with a panel of professionals trends to show that eugenol is involved in perceptual interactions at the heart of Baco blanc spirits quality. Finally, the different forms of eugenol are not only a subject of study for Armagnac spirits, but of wider interest in the composition of hybrid and resistant vines and in the characterisation of the organoleptic quality of wine spirits.

 

1. Franc, C., Riquier, L., Hastoy, X., Monsant, C., Noiville, P., Pelonnier-Magimel, E., Marchand-Marion, S., Tempère, S., Ségur.,
M. C., De Revel, G. (2023). Highlighting the varietal origin of eugenol in Armagnac wine spirit from Baco blanc, a hybrid grape variety. Food Chemistry (submitted)
2. Goupy, J. (2016). Modélisation par les plans d’expériences. Techniques de l’ingénieur. Mesures et contrôle., RB1(R275).
3. Gunata, Z., Dugelay, J., Sapis, J. C., Baumes, R., & Bayonove, C. (1993). Role of the enzyme in the use of the flavour potential from grape glycosides in wine making. 19 p. https://hal.inrae.fr/hal-02844337 
4. Sun, Q., Gates, M. J., Lavin, E. H., Acree, T. E., & Sacks, G. L. (2011). Comparison of Odor-Active Compounds in Grapes and Wines from Vitis vinifera and Non-Foxy American Grape Species. Journal of Agricultural and Food Chemistry, 59(19), 10657-10664. https://doi.org/10.1021/jf2026204

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Xavier Hastoy¹, Céline Franc¹, Laurent Riquier¹, Thierry Dufourcq² , Marie-Claude Ségur², Marc Fermaud³, Stéphanie Marchand¹ and Gilles de Revel¹

1. Université de Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, ŒNO, ISVV, F-33140 Villenave d’Ornon, France
2. Institut Français de la Vigne et du Vin – V’Innopôle Sud-Ouest, 1920 Route de Lisle-sur-Tarn, 81310, Peyrole, France
3. Bureau National Interprofessionnel de l’Armagnac, F-32800 Eauze
4. INRAE, UMR SAVE, Bordeaux Science Agro, ISVV, F-33882, Villenave d’Ornon, France

Contact the author*

Keywords

micro-vinifications, micro-distillations, spirits quality, phenylpropanoids

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INVESTIGATION OF MALIC ACID METABOLIC PATHWAYS DURING ALCOHOLIC FERMENTATION USING GC-MS, LC-MS, AND NMR DERIVED 13C-LABELED DATA

Malic acid has a strong impact on wine pH and the contribution of fermenting yeasts to modulate its concentration has been intensively investigated in the past. Recent advances in yeast genetics have shed light on the unexpected property of some strains to produce large amounts of malic acid (“acidic strains”) while most of the wine starters consume it during the alcoholic fermentation. Being a key metabolite of the central carbohydrate metabolism, malic acid participates to TCA and glyoxylate cycles as well as neoglucogenesis. Although present at important concentrations in grape juice, the metabolic fate of malic acid has been poorly investigated.

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.

FACTORS AFFECTING QUERCETIN SOLUBILITY IN SANGIOVESE RED WINE: FIRST RESULTS

Quercetin (Q) is present in grape in form of glycosides and as aglycone. These compounds are extracted from grape skins during winemaking. In wines, following the hydrolysis reactions, the amount of quercetin aglycon can exceed its solubility value. Unfortunately, a threshold solubility concentration for quercetin in wine is not easy to determine because it depends on wine matrix (Gambuti et al., 2020).

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration.

FLAVONOID POTENTIAL OF MINORITY RED GRAPE VARIETIES

The alteration in the rainfall pattern and the increase in the temperatures associated to global climate change are already affecting wine production in many viticultural regions all around the world (1). In fact, grapes are nowadays ripening earlier from a technological point of view than in the past, but they are not necessarily mature from a phenolic point of view. Consequently, the wines made from these grapes can be unbalanced or show high alcohol content. Dramatic shifts in viticultural areas are currently being projected for the future (2).