terclim by ICS banner
IVES 9 IVES Conference Series 9 IN DEPTH CHARACTERIZATION OF OENOLOGICAL CHARACTERISTICS OF TWO LACHANCEA THERMOTOLERANS STARTER STRAINS

IN DEPTH CHARACTERIZATION OF OENOLOGICAL CHARACTERISTICS OF TWO LACHANCEA THERMOTOLERANS STARTER STRAINS

Abstract

Non-Saccharomyces starter cultures became increasingly popular over the years because of their potential to produce more distinctive and unique wines. The major benefit of the use of Lachancea thermotolerans as a fermentation starter is its ability to produce relevant amounts of lactic acid and reduce alcoholic strength, making it valuable for mitigating negative impacts of climate change on grapes and wine quality. Besides, like any other non-Saccharomyces yeast, L. thermotolerans can significantly affect a whole range of other physico-chemical wine parameters. This study investigated the impact of two L. thermotolerans strains (LT2 and LT5) in fermentation of Malvazija istarska, a Croatian white grape cultivar that in some terroirs and growing seasons requires acidification and/or reduction of alcohol level. A strain of Saccharomyces cerevisiae (EC1118) was sequentially inoculated to finish LT fermentations, and as a monoculture control. Standard physico-chemical parameters were determined by the OIV methods. Organic acids, glycerol, and pathogenesis-related (PR) proteins were determined by HPLC-DAD. Targeted UPLC-MS/MS was performed to analyse phenolic composition, while total phenols were measured by UV/Vis spectrophotometry. Volatile aroma compounds were determined by untargeted metabolomics using GC×GC/TOF-MS complemented by GC-MS targeted analysis. Both L. thermotolerans starters increased total acidity, while the concentration of lactic acid increased from 0.08 g/L in control to 0.73 g/L in LT2 and 0.88 g/L in LT5 treatment wine. Significantly higher concentration of glycerol was determined in wines produced by LT2 strain. Phenol composition was affected without a uniform pattern, while total phenolic content was decreased by LT2 and increased by LT5 strain. Among PR proteins, only a single thaumatin-like protein was significantly reduced by both strains. The use of L. thermotolerans significantly modulated the volatile composition of wines and the most pronounced changes included increased linalool, ethyl lactate, ethyl isobutyrate, ethyl phenyl lactate, and diethyl succinate concentrations. Results from this study contribute to the overall knowledge and understanding of L. thermotolerans contribution to sequential fermentation, with the emphasis on its oenological potential to produce wines with improved acidity and complexity.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Doris Delač Salopek¹, Ivana Horvat¹, Silvia Carlin², Urska Vrhovsek², Ana Hranilović3,4, Sanja Radeka¹, Tomislav Plavša¹, Ivana Rajnović⁵, Tanja Vojvoda Zeljko⁶, Igor Lukić1,7,*

1. Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia (* correspondence: )
2. Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via  E. Mach 1, 38098 San Michele all’Adige, TN, Italy
3. Department of Wine Science, The University of Adelaide, Urrbrae, SA 5064, Australia
4. Laffort, 11 Rue Aristide Berges, 33270 Floirac, France
5. Department of Microbiology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia
6. Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
7. Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, 10000 Zagreb, Croatia 

Contact the author*

Keywords

sequential inoculation, Lachancea thermotolerans, acidity, 2D gas chromatography

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

OENOLOGICAL POTENTIAL OF AUTOCHTHONOUS SACCHAROMYCES CEREVISIAE STRAINS AND THEIR EFFECT ON THE PRODUCTION OF TYPICAL SAVATIANO WINES

Due to the global demand for terroir wines, the winemaking industry has focused attention on exploiting the local yeast microflora of each wine growing region to express the regional character and enhance the sensory profile of wines such as varietal typicity and aroma complexity. The objective of the present study was to isolate and compare the indigenous strains of Saccharomyces cerevisiae present in different vineyards in the Mesogeia – Attiki wine region (Greece), evaluate their impact on chemical composition and sensory profile of Savatiano wines and select the most suitable ones for winemaking process.

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).

WINE WITHOUT ADDED SO₂: OXYGEN IMPACT AND EVOLUTION ON THE POLYPHENOLIC COMPOSITION DURING RED WINE AGING

SO₂ play a major role in the stability and wine during storage. Nowadays, the reduction of chemical input during red winemaking and especially the removing SO₂ is a growing expectation from the consumers. Winemaking without SO₂ is a big challenge for the winemakers since the lack of SO₂ affects directly the wine chemical evolution such as the phenolic compounds as well as its microbiological stability.

Managing changes in taste: lessons from champagne in britain 1800-1914

This paper focuses on how taste in wine (and other foods) changes and the implications of this process
for producers and merchants.
It draws primarily on the changing taste of and taste for champagne in Britain in the 19th century. Between 1850 and 1880 champagne went from a dosage level of around 20% (20 grams sugar / litre) to 0%. Champagne became the ‘dinner wine of the elite – drunk with roast meat and savoury dishes.
Contemporaries accepted that while most people could distinguish the taste of good champagne from that of bad, very few could distinguish very good from good.

IMPACT OF MUST NITROGEN DEFICIENCY ON WHITE WINE COMPOSITION DEPENDING ON GRAPE VARIETY

Nitrogen (N) nutrition of the vineyard strongly influences the must and the wine compositions. Several chemical markers present in wine (i.e., proline, succinic acid, higher alcohols and phenolic compounds) have been proposed for the cultivar Chasselas, as indicators of N deficiency in the grape must at harvest [1]. Grape genetics potentially influences the impact of N deficiency on grape composition, as well as on the concentration of potential indicators in the wine. The goal of this study was to evaluate if the che- mical markers found in Chasselas wine can be extended for other white wines to indicate N deficiency in the grape must.