terclim by ICS banner
IVES 9 IVES Conference Series 9 PRODUCTION OF A FUNCTIONAL BEVERAGE FROM WINEMAKING BY-PRODUCTS: A NEW WAY OF VALORISATION

PRODUCTION OF A FUNCTIONAL BEVERAGE FROM WINEMAKING BY-PRODUCTS: A NEW WAY OF VALORISATION

Abstract

In the challenge of transforming waste into useful products that can be re-used in a circular economy perspective, winery by-products can be considered as a source of potentially bioactive molecules such as polyphenols. The wine industry generates each year 20 million tons of by-products. Kombucha fermentation is an ancestral process which allow to increase the biological properties of tea by the action of a microbial consortium formed by yeasts and bacteria called SCOBY. It belongs to the field of healthy food for which the interest of consumers is growing. The objective of this work was to propose a new functional beverage made from winemaking by-products fermented by a Kombucha SCOBY.

In a preliminary step, 2 types of by products were evaluated for Kombucha fermentation, wine lees and grape pomaces in order to assess their ability to ferment. Then the work was focused on grape pomaces originated from red winemaking. Several parameters were varied during the fermentation process: temperature, pomace concentration, sugar concentration, temperature and duration. The fermentation kinetics and final composition of grape Kombucha were monitored. Several biological activities were assessed in vitro at the beginning and at the end of fermentation: antioxydant, antidiabetic and anti-inflammatory. Depending on their physico-chemical and biological characteristics, some of the pomace Kombucha beverages were submitted to a sensory evaluation.

For all fermentation conditions the biological activities were increased, at least by a factor 2, at the end of fermentation compared to the non-fermented grape pomaces infusions. However according to their concentrations in sugar and total acidity, the grape pomace Kombuchas were not equally appreciated by the panellists. A majority of them preferred the Kombucha flavoured with natural fruity aroma.

This work confirmed the feasibility of making a grape pomace Kombucha beverage. Even if the kombucha fermentation improved the biological activities of this new beverage, results showed that there is no significant impact of the tested processing parameters on the biological activities in vitro. This new functional beverage consists into a new way of winemaking by-products valorisation. As for future perspectives, the organoleptic aspect must be improved.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Nathalie Barakat¹, Sandra Beaufort¹, Jalloul Bouajila¹, Youssef El Rayess², Patricia Taillandier¹

1. LGC, Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
2. Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon

Contact the author*

Keywords

kombucha, grape pomace, anti-inflammatory, antidiabetic

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations.

NOVEL BENZENETHIOLS WITH PHENOLS CAUSE ASHY, SMOKE FLAVOR PERCEPTION IN RED WINES

Smoke impacts on wines are becoming a worldwide problem; the size and severity of wildfires increasing due to influences from changing climates.¹ For over a century, wines have been known to have a unique issue of absorbing chemical compounds derived from wildfire smoke wherein the flavor of the subsequent wine becomes ashy, rubbery, campfire-like, and smoky.² The economic impacts of a smoke-impacted wine can last for years depending on the grape varietal, costing Oregon and Washington states in the United States over a billion dollars from the 2020 wildfires, as an example.³ While years of research have indicated elevated concentrations of smoke-related compounds, such as guaiacol and syringol, in wines after smoke events, unfortunately, replicating the sensory experience using smoke-associated phenols has not had much success.⁴

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine.

HOLISTIC APPROXIMATION OF THE INFLUENCE OF SACCHAROMYCES STRAINS ON WINE AROMA PRECURSORS

Wine varietal aroma is the result of a mixture of compounds formed or liberated from specific grape-aroma precursors. Their liberation/formation from their specific precursors can occur spontaneously by acid catalyzed rearrangements or hydrolysis or by the action of the yeast enzymatic activities. The influence of yeast during fermentation on the production of these volatile compounds has been widely studied however, the effect of this influence during aging is not fully understood. In order to evaluate these processes several indirect strategies have been used to study aroma precursors although they are not useful to understand the chemistry of the process.

PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

Lugana wines are made from Turbiana grapes. In recent times, many white and rosé wines are bottled and stored in flint glass bottles because of commercial appeal. However, this practice could worsen the aroma profile of the wine, especially as regards the development of volatile sulfur compounds (VSCs). This study aims to investigate the consequences of exposure to light in flint bottles on VSCs profile of Lugana wines fermented with two different yeasts and with different post-fermentation residual nitrogen.