terclim by ICS banner
IVES 9 IVES Conference Series 9 DO MICROPLASTICS IN VINEYARD SOIL AFFECT THE BIOAVAILABILITY OF VINE NUTRITION?

DO MICROPLASTICS IN VINEYARD SOIL AFFECT THE BIOAVAILABILITY OF VINE NUTRITION?

Abstract

Microplastics can alter physicochemical and biogeochemical processes in the soil, but whether these changes have further effects on soil fertility, and if so, whether these effects vary depending on the type of soil in the vineyard and the type of plastic used in the vineyard. Knowing what types of plastics are currently used in vineyards in Slovenian viticultural regions as strings to tie vines to the stake, the aim of our study was to assess the effects of microplastic particles from polypropylene (PP) and polyvinyl chloride (PVC) on the availability of macro (potassium (K), Potassium (K), calcium (Ca), magnesium (Mg) and phosphate (P)) and micronutrients (iron (Fe), copper (Cu), manganese (Mn) and zinc (Zn)) in two vineyard soils contrasting in pH and mineralogy. For this purpose, a short-term soil incubation experiment (120 days) was carried out in which the soil samples were enriched with micro-PP and micro-PVC particles. After the incubation period, macro- and micronutrient availability were measured. The results show that micro-PP particles have a stronger influence on the availability of macronutrients in the soil. Phosphate availability decreased by up to 30%, potassium availability by 20% and magnesium by 10%. However, the macronutrient most affected was nitrate, as the availability of this element decreased by more than 90% with the presence of micro-PVC particles in the soil. These results were observed in both soil types (calcareous and acidic soils). On the other hand, the presence of micro-PP particles in the soil had a greater effect on the availability of micronutrients, but not to the same extent as micro-PVC – the availability of iron was reduced by 10% and that of Cu by 10%. If we assume PVC and PP contamination of vineyard soils, we can assume that nutrients should be supplied by spraying vines with soluble fretilizers in higher concentrations, as this is the most common method to specifically minimise micronu- trient deficiencies in vineyards. On the other hand, Cu, which is present in fungicidal sprays and may be present in toxic concentrations in vineyard soils, was the least affected micronutrient and could also be active in the presence of microplastic particles. Although research on the effects of microplastics on nutrient cycling in soils is still in its infancy, microplastics directly affect some soil properties that may also have indirect effects on soil nutrient cycling, e.g. cycling of C, N, P and other elements.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Erika Jez1, Elisa Pellegrini2, Maria De Nobili3, Marco Contin4

1. University of Nova Gorica, Vipavska cesta 13, 5000 Nova Gorica, Slovenia
2. – 4. Department of Agricultural, Food, Environmental and Animal Sciences. University of Udine, Via delle Scienze 206, 33100 Udine, Italy

Contact the author*

Keywords

Soil, microplastics, makronutrients, micronutrients, availability

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EXPLORING THE METABOLIC AND PHENOTYPIC DIVERSITY OF INDIGENOUS YEASTS ISOLATED FROM GREEK WINE

Climate change leads to even more hostile and stressful for the wine microorganism conditions and consequently issues with fermentation rate progression and off-character formation are frequently observed. The objective of the current research was to classify a great collection of yeast isolates from Greek wines based on their technological properties with oenological interest. Towards this direction, fourteen spontaneously fermented wines from different regions of Greece were collected for further yeast typing. The yeast isolates were subjected in molecular analyses and identification at species level.

PROFILING OF LIPIDS IN WINES FROM MONOCULTURE FERMENTATION WITH INDIGENOUS METSCHNIKOWIA YEAST SPECIES

Lipids are a diverse group of organic compounds essential for living systems. They are vital compounds for yeast which makes them an important modulator of yeast metabolism in alcoholic fermentation. This study presents a comprehensive lipidome analysis of wine samples from the Vitis vinifera L., Maraština. The fermentation trails were set up in monoculture with different indigenous yeast strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes: Metschnikowia pulcherrima, Metshnikowia sinensis/shanxiensis , and Metschnikowia chyrsoperlae.

THE EFFECT OF BENTONITE FINING ON THE VOLATILE AND NON-VOLATILE PROFILE OF ITALIAN WHITE WINES

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines. Macerations were of 7 days, except in the extended macerations that were of 15 days.

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2
One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.

IMPACT OF HARVEST DATE ON THE FINE MOLECULAR COMPOSITION OF MUST AND BORDEAUX RED WINE (VAR. MERLOT, CABERNET SAUVIGNON). FOCUS ON ACIDITY AND SENSORY IMPACT AFTER FIVE YEARS OF AGING

Climate change has brought several impacts that are becoming increasingly intense during the last few years and put at risk the quality of the berries or even the plant’s sustainability. Such extreme climatic events impact the composition of the wine while modulating its quality and the consumer preferences (Tempère et al., 2019). The three most important changes that take place in the must are: 1) decrease acidity, 2) increase of the concentration of sugar, hence increase of alcohol in the wine, and 3) modification
of the sensory balance and the development for example of cooked fruit aromas.