terclim by ICS banner
IVES 9 IVES Conference Series 9 DO MICROPLASTICS IN VINEYARD SOIL AFFECT THE BIOAVAILABILITY OF VINE NUTRITION?

DO MICROPLASTICS IN VINEYARD SOIL AFFECT THE BIOAVAILABILITY OF VINE NUTRITION?

Abstract

Microplastics can alter physicochemical and biogeochemical processes in the soil, but whether these changes have further effects on soil fertility, and if so, whether these effects vary depending on the type of soil in the vineyard and the type of plastic used in the vineyard. Knowing what types of plastics are currently used in vineyards in Slovenian viticultural regions as strings to tie vines to the stake, the aim of our study was to assess the effects of microplastic particles from polypropylene (PP) and polyvinyl chloride (PVC) on the availability of macro (potassium (K), Potassium (K), calcium (Ca), magnesium (Mg) and phosphate (P)) and micronutrients (iron (Fe), copper (Cu), manganese (Mn) and zinc (Zn)) in two vineyard soils contrasting in pH and mineralogy. For this purpose, a short-term soil incubation experiment (120 days) was carried out in which the soil samples were enriched with micro-PP and micro-PVC particles. After the incubation period, macro- and micronutrient availability were measured. The results show that micro-PP particles have a stronger influence on the availability of macronutrients in the soil. Phosphate availability decreased by up to 30%, potassium availability by 20% and magnesium by 10%. However, the macronutrient most affected was nitrate, as the availability of this element decreased by more than 90% with the presence of micro-PVC particles in the soil. These results were observed in both soil types (calcareous and acidic soils). On the other hand, the presence of micro-PP particles in the soil had a greater effect on the availability of micronutrients, but not to the same extent as micro-PVC – the availability of iron was reduced by 10% and that of Cu by 10%. If we assume PVC and PP contamination of vineyard soils, we can assume that nutrients should be supplied by spraying vines with soluble fretilizers in higher concentrations, as this is the most common method to specifically minimise micronu- trient deficiencies in vineyards. On the other hand, Cu, which is present in fungicidal sprays and may be present in toxic concentrations in vineyard soils, was the least affected micronutrient and could also be active in the presence of microplastic particles. Although research on the effects of microplastics on nutrient cycling in soils is still in its infancy, microplastics directly affect some soil properties that may also have indirect effects on soil nutrient cycling, e.g. cycling of C, N, P and other elements.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Erika Jez1, Elisa Pellegrini2, Maria De Nobili3, Marco Contin4

1. University of Nova Gorica, Vipavska cesta 13, 5000 Nova Gorica, Slovenia
2. – 4. Department of Agricultural, Food, Environmental and Animal Sciences. University of Udine, Via delle Scienze 206, 33100 Udine, Italy

Contact the author*

Keywords

Soil, microplastics, makronutrients, micronutrients, availability

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

POTENTIAL DEACIDIFYING ROLE OF A COMMERCIAL CHITOSAN: IMPACT ON PH, TITRATABLE ACIDITY, AND ORGANIC ACIDS IN MODEL SOLUTIONS AND WHITE WINE

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps. The main derivative of chitin is chitosan (CH), produced by N-deacetylation of chitin in alkaline solutions. Over the past decade, the OIV/OENO 338A/ 2009 resolution approved the addition of allergen-free fungoid CH to must and wine as an adjuvant for microbiological control, prevention of haziness, metals chelation and ochratoxins removal (European Commission. 2011). Despite several studies on application of CH in winemaking, there are still very limited and controversial data on its interaction with acidic components in wine (Colan-gelo et al., 2018; Castro Marin et al., 2021).

ALCOHOLIC FERMENTATION AND COLOR OF ROSÉ WINES: INVESTIGATIONS ON THE MECHANISMS RESPONSIBLE FOR SUCH DIVERSITY

Color is one of the key elements for the marketing of rosé wines due to their packaging in transparent bottles. Their broad color range is due to the presence of pigments belonging to phenolic compounds extracted from grapes or formed during the wine-making process. However, the mechanisms responsible for such diversity are poorly understood. The few investigations performed on rosé wines showed that their phenolic composition is highly variable, close to that of red wines for the darkest rosés but very different for light ones [1]. Moreover, large variations in the extent of color loss taking place during fermentation have been reported but the mechanisms involved and causes of such variability are unknown.

EXPLORING THE INFLUENCE OF S. CEREVISIAE MANNOPROTEINS ON WINE ASTRINGENCY AND THE IMPACT OF THEIR POLYSACCHARIDE STRUCTURE

Mannoproteins (MPs) are proteoglycans from the outmost layer of yeast cell walls released into wine during alcoholic fermentation and ageing on lees processes. The use of commercial preparations of mannoproteins as additives to improve wine stability with regards to the crystallization of tartaric salts and to prevent protein haze in the case of white and rosé wines is authorized by the OIV.
Regarding red wines and polyphenols, mannoproteins are described as able to improve their colloidal stability and modulate the astringent effect of condensed tannins. The latter interact with salivary proteins forming insoluble aggregates that cause a loss of lubrication in the mouth and promote a drying and puckering sensation. However, neither the interaction mechanisms involved in mannoproteins capacity to impact astringency nor the structure-function relationships related to this property are fully understood.

PRODUCTION OF A FUNCTIONAL BEVERAGE FROM WINEMAKING BY-PRODUCTS: A NEW WAY OF VALORISATION

In the challenge of transforming waste into useful products that can be re-used in a circular economy perspective, winery by-products can be considered as a source of potentially bioactive molecules such as polyphenols. The wine industry generates each year 20 million tons of by-products. Kombucha fermentation is an ancestral process which allow to increase the biological properties of tea by the action of a microbial consortium formed by yeasts and bacteria called SCOBY. It belongs to the field of healthy food for which the interest of consumers is growing. The objective of this work was to propose a new functional beverage made from winemaking by-products fermented by a Kombucha SCOBY.

WINE RACKING IN THE WINERY AND THE USE OF INERT GASES: CONTROL AND OPTIMIZATION OF THE PROCESS

Atmospheric oxygen (O₂) generates oxidation in wines that affect their physicochemical and sensory evolution. The O₂ uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O₂ uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The aim was to study the uptake of O₂ during the racking of a model wine as a reference and to compare with purging the destination tank with different inert gases.