terclim by ICS banner
IVES 9 IVES Conference Series 9 PINKING PHENOMENA ON WHITE WINES: RELATION BETWEEN PINKING SUSCEPTIBILITY INDEX (PSI) AND WINE ANTHOCYANINS CONTENT

PINKING PHENOMENA ON WHITE WINES: RELATION BETWEEN PINKING SUSCEPTIBILITY INDEX (PSI) AND WINE ANTHOCYANINS CONTENT

Abstract

Pinking is the emergence of pink tones in white wines exclusively produced from white grape varieties, known as pinking phenomena for many years. Pinking is essentially appeared when white wines are produced under reducing conditions [1,2,3]. Pinking usually occurs after bottling and storage of white wines, but its appearance has also been described after alcoholic fermentation or even as soon as the grape must is extracted [4]. Therefore, the purpose of this work was to investigate the existence of an-thocyanins in white wines made from different white grape varieties and grown locations and critically evaluate the most common method used for predicting pinking appearance in white wines: the Pinking Susceptibility Index (PSI). Anthocyanins were concentrated by SPE [1]. Also, the products formed by hy-drogen peroxide oxidation of the same wines were isolated using this method. The correlation between the PSI and the whole visible spectra was studied by multivariate statistical methods, PCA and PLS ana-lysis, to evaluate the spectral regions in the visible spectra most important to the measured PSI. No cor-relation between anthocyanins concentration and the Pinking Susceptibility Index (PSI) was observed contrarily to the colour of wines exposed to oxygen (r = 0.871, p < 0.00005) [5]. The oxidation of wines with hydrogen peroxide resulted in the formation of various compounds. PSI was correlated with com-pounds absorbing in the 400–480 nm region, probably more related to the browning than the pinking phenomenon. The lack of correlation between the PSI and anthocyanins concentration in white wines can be due to the different chemical compositions of white wines that yield various compounds after oxidation that might not be related to the natural wine pinking phenomenon. Acknowledgments We appreciate the financial support provided to CQ-VR – Chemistry Research Centre – Vila Real (UIDB/00616/2020 and UIDP/00616/2020) by FCT – Portugal and COMPETE. The financial support of the project AgriFood XXI (NORTE-01-0145-FEDER-000041) co-financed by the European Regional Development Fund through NORTE 2020 (Programa Operacional Regional do Norte 2014/2020) is also acknowledged.

 

1. Andrea-Silva, J., Cosme, F., Filipe-Ribeiro, L., Moreira, A. S. P., Malheiro, A. C., Coimbra, M. A., … Nunes, F. M. (2014). Origin of the pinking phenomenon of white wines. Journal of Agricultural and Food Chemistry, 62, 5651–5659
2. Du Toit, W., Marais, J., Pretorius, I., & Du Toit, M. (2006). Oxygen in must and wine: A review. South African Journal for Eno-logy and Viticulture, 27, 76–94.
3. Filipe-Ribeiro, L., Andrea-Silva, J., Cosme, F., & Nunes, F. M. (2022). Chapter 15 –Pinking. In A. Morata (Ed.), White wine technology (pp. 187–195). Cambridge, Massachusetts, USA: Academic Press.
4. Simpson, R., Miller, G., & Orr, L. (1982). Oxidative pinking of whites wines: Recent observations. Food Technology in Australia, 34, 46–47.
5. Ana Carolina Gonçalves a, Fabrizio Minute b, Federico Giotto b, Luís Filipe-Ribeiro a, Fernanda Cosme a, Fernando M. Nunes (2022). Is pinking susceptibility index a good predictor of white wines pinking phenomena? Food Chemistry, 386, 132861

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Ana Carolina Gonçalves¹, Fabrizio Minute², Federico Giotto², Luís Filipe-Ribeiro¹, Fernanda Cosme¹, Fernando M. Nunes¹

1. CQ-VR—Chemistry Research Centre—Vila Real, Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
2. Giottoconsulting srl, 31051 Follina

Contact the author*

Keywords

White wines, Pinking, PSI, Monomeric anthocyanins

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.

THE ODORIFEROUS VOLATILE CHEMICALS BEHIND THE OXIDATIVE AROMA DEGRADATION OF SPANISH RED WINES

It is a well-established fact that premature oxidation is noxious for wine aromatic quality and longevity. Although some oxidation-related aroma molecules have been previously identified, there are not works carrying out systematic research about the changes in the profiles of odour-active volatiles during wine oxidation.

HOLISTIC APPROXIMATION OF THE INFLUENCE OF SACCHAROMYCES STRAINS ON WINE AROMA PRECURSORS

Wine varietal aroma is the result of a mixture of compounds formed or liberated from specific grape-aroma precursors. Their liberation/formation from their specific precursors can occur spontaneously by acid catalyzed rearrangements or hydrolysis or by the action of the yeast enzymatic activities. The influence of yeast during fermentation on the production of these volatile compounds has been widely studied however, the effect of this influence during aging is not fully understood. In order to evaluate these processes several indirect strategies have been used to study aroma precursors although they are not useful to understand the chemistry of the process.

CHARACTERIZATION OF ENOLOGICAL OAK TANNIN EXTRACTS BY MULTI-ANALYTICAL METHODS APPROACH

Oak tannin extracts are commonly used to improve wine properties. The main polyphenols found in oak wood extracts are ellagitannins¹ that release ellagic acid upon hydrolysis and comprise numerous structures². Moreover, oak tannin extracts contain other compounds giving a complex mixture. Consequently, the official OIV method based on gravimetric analysis of the tannin fraction adsorbed on polyvinylpolypyrrolidone is not sufficient to describe their composition and highlight their chemical diversity.