terclim by ICS banner
IVES 9 IVES Conference Series 9 BORDEAUX RED WINES WITHOUT ADDED SULFITES SPECIFICITIES: COMPOSITIONAL AND SENSORY APPROACHES TOWARDS HIGHLIGHTING AND EXPLAI-NING THEIR SPECIFIC FRUITINESS AND COOLNESS

BORDEAUX RED WINES WITHOUT ADDED SULFITES SPECIFICITIES: COMPOSITIONAL AND SENSORY APPROACHES TOWARDS HIGHLIGHTING AND EXPLAI-NING THEIR SPECIFIC FRUITINESS AND COOLNESS

Abstract

With the development of naturality expectations, wines produced without any addition of sulfur dioxide (SO₂) become very popular for consumers and such wines are increasingly present on the market. Recent studies also showed that Bordeaux red wines without added SO₂ could be differentiated from a sensory point of view from similar wines produced with SO₂¹. Thus, the aim of the current study was to charac-terize from a sensory point of view, specific aromas of wines without added SO₂ and to identify com-pounds involved.

First, sensory profile were established for wines produced from the same merlot grapes with or wit-hout SO₂ addition throughout all winemaking process². This led to demonstrate that wine without added SO₂ was perceived differently than the wine with added SO₂ with a specific fruity aroma and a higher coolness. Moreover, to validate that presence of free SO₂ was not only at the origin of these differences, triangle tests were also performed from these wines.

In a second step, targeted analyses were performed on compounds known to be impacted by SO₂ and/or with specific impact on fruity aroma. Thus, acetaldehyde, diacetyl, and methyl salicylate, previously identified by a sensory target approach³, were studied. These quantification approaches allowed to ob-serve that wines without added SO₂ presented free acetaldehyde, higher concentrations in methyl sali-cylate and lower concentrations of free and total diacetyl. Based on these results, sensory characterization of these compounds in wines without added SO₂, and considering the impact of SO₂ were done using sensory profile. This allowed to show that presence of methyl salicylate, acetaldehyde and/or free SO₂ modified perception of coolness, whereas diacetyl and methyl salicylate modified fruity aroma.

Finally, experimental wine produced from the same grapes respectively with and without SO₂ addition were supplemented, according to their compositional specificities, with SO₂ and diacetyl for the wine without added SO₂ and with methyl salicylate for that one with added SO₂. These two supplemented wines were compared by triangle test and were perceived differently, thus underlined that differences between red wine produced with and without added SO₂ from Bordeaux involve other compounds than those considered here and suggests that further investigations are needed.

 

1. Pelonnier-Magimel, E.; Mangiorou, P.; Philippe, D.; Revel, G. de; Jourdes, M.; Marchal, A.; Marchand, S.; Pons, A.; Riquier, L.; Teissedre, P.-L.; Thibon, C.; Lytra, G.; Tempère, S.; Barbe, J.-C. Sensory Characterisation of Bordeaux Red Wines Produced without Added Sulfites. OENO One 2020, 54 (4), 733–743. 
2. Pelonnier-Magimel, E.; Windholtz, S.; Pomarède, I. M.; Barbe, J.-C. Sensory Characterisation of Wines without Added Sul-fites via Specific and Adapted Sensory Profile. OENO One 2020, 54 (4), 671–685. 
3. Pelonnier-Magimel, E.; Lytra, G.; Franc, C.; Farris, L.; Darriet, P.; Barbe, J.-C. Methyl Salicylate, an Odor-Active Compound in Bordeaux Red Wines Produced without Sulfites Addition. J. Agric. Food Chem. 2022, 70 (39), 12587–12595.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Edouard Pelonnier-Magimel1,2, Sara Windholtz1,2, Georgia Lytra1,2, Margaux Cameleyre1,2, Laurent Riquier1,2, Isabelle Masneuf-Pomarède1,2, Jean-Christophe Barbe1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France

Contact the author*

Keywords

Wines without added sulfites, Methyl salicylate, Carbonyl compounds, Sensory analysis

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INFLUENCE OF CHITOSAN, ABSCISIC ACID AND BENZOTHIADIAZOLE TREATMENTS ON SAVVATIANO (VITIS VINIFERA L.) WINES VOLATILE COMPOSITION PROFILE

In the last decades the use of bioestimulants in viticulture have been promoted as alternative to conven- tional pesticides. Moreover, as bioestimulants promote the biosynthesis of secondary metabolites in grape berries, several studies had investigated their influence on the accumulation of phenolic com- pounds (Monteiro et al., 2022). However, few studies, so far, are focused on the accumulation of the vo- latile compounds and their impact on the produced wines (Giménez-Bañón et al., 2022; Gomez- Plaza et al., 2012; Ruiz Garcia et al., 2014). This study was conducted in a single vineyard of white autochthonous grapevine variety Savvatia- no (Vitis vinifera L.) in Muses Valley (Askri, Viotia, Greece). Chitosan (CHT), Abscisic Acid (ABA) and Benzothiadiazole (BTH) were applied.

AN AUTOMATIC CANOPY COOLING SYSTEM TO COPE WITH THE THERMAL-RADIATIVE STRESSES IN THE PIGNOLETTO WHITE GRAPE

In recent years characterized by hot dry summers, the implementation of innovative irrigation tools in the vineyard represents a crucial challenge to ensure optimal production and to avoid excess of water consumption. It is known that the grapevine reacts to multiple stresses – i.e., high temperatures and wa- ter shortage – through adaptive mechanisms that are detrimental to the yield. Furthermore, this condi- tion is usually aggravated by high solar radiation, which could negatively affect the phenolic composi- tion of the grapes. Therefore, a cooling system has been developed aiming to reduce bunches’ sunburn damage.

MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

From the chemical angle, Champagne wines are complex hydro-alcoholic mixtures supersaturated with dissolved carbon dioxide (CO₂). During the pouring process and throughout the several minutes of tasting, the headspace of a champagne glass is progressively invaded by many chemical species, including gas-phase CO₂ in large majority. CO₂ bubbles nucleated in the glass and collapsing at the champagne surface act indeed as a continuous paternoster lift for aromas throughout champagne or sparkling wine tasting [1]. Nevertheless, inhaling a gas space with a concentration of gaseous CO₂ close to 30% and higher triggers a very unpleasant tingling sensation, the so-called “carbonic bite”, which might completely perturb the perception of the wine’s bouquet.

NEAR INFRARED SPECTROSCOPY FOR THE ESTIMATION OF TEMPRANILLO BLANCO VOLATILE COMPOSITION ALONG GRAPE MATURATION

Grape volatile compounds are mainly responsible for wine aroma, so it is important to know the va-rietal aromatic composition throughout ripening process. Currently, there are no tools that allow mea-suring the aromatic composition of grapes, in intact berries and periodically, throughout ripening, in the vineyard or in the winery. For this reason, this work evaluated the use of near infrared spectroscopy (NIR) to estimate the aromatic composition and total soluble solids (TSS) of Tempranillo Blanco berries during ripening. For this purpose, NIR spectra (1100-2100 nm) were acquired from 240 samples of in-tact berries, collected at different dates, from veraison to overripening.

IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

Non-Saccharomyces yeasts not only increase microbial diversity during wine fermentation, but also have a positive effect on improving wine aroma. Among these non-Saccharomyces yeast species, Metschnikowia pulcherrima is often studied and used in winemaking in recent years, but its application in icewine has been rarely reported. In this study, indigenous M. pulcherrima strains and Saccharomyces cerevisiae strains (commercial and indigenous strains) were sequentially inoculated for icewine fermentations; meanwhile, pure S. cerevisiae fermentations were used as the control; indigenous strains used above were screened from spontaneous fermentations of Vidal blanc icewine.