GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Root development and the performance of grapevines in response to natural as well as man‐made soil impediments

Root development and the performance of grapevines in response to natural as well as man‐made soil impediments

Abstract

Context and purpose of the study ‐ The majority of soils used for wine and table grape production in South Africa are notoriously shallow, i.e. they are restricting root penetration. The result of such shallow soils is uneven and poor vineyard performance that eventually lead to unprofitable vineyards. The purpose of this study was to investigate soil impediments to root growth, methods to detect such impediments, and practices to alleviate obstructions before planting, as well as in existing vineyards.

Material and methods ‐ Many investigations in South Africa have addressed the reasons for poor grapevine root development and methods to rectify this detrimental factor. This large body of knowledge is not only spread over different generations of researchers and experts, but also fragmented among many articles and journals. Starting with recommendations for “dynamite‐ ploughing” in 1912, all research on soil profile modification was reviewed and a synopsis made regarding soil conditions, root studies, grapevine response and corrective measures.

Results ‐Natural soil compaction is the main cause of root restriction in the majority of vineyard soils in the Western Cape, but man‐made compaction through vehicle traffic and implement use occurs. Acid soils, i.e. pHKCl< 5.5 are commonly found in the coastal areas of the Western Cape. Further impediments to grapevine root penetration include dense clay in the subsoil, various types of hardpan, water tables, rock and sharp transitions between soil layers of different textures. Plant holes incorrectly made can be a serious impediment to root distribution and poor growth of young vines. Penetrometer measurement of soil resistance is the most practical, easiest and quickest method to detect the degree, position and extent of soil compaction. Grapevine root penetration is drastically impeded above 2000 kPa penetrometer readings. The EM38 apparatus that measures the bulk electrical conductivity of the soil, is also increasingly used to determine root restricting layers in the soil. Grapevine root distribution is the most reliable, direct and accurate indicator of soil conditions. Root distribution of grapevines is generally shaped by soil conditions and cultivation practices and not by genetic traits of the rootstock. Scientific root studies in South Africa date back to the 1930’s and include the profile wall method, core sampling, glass wall methods, excavation methods. A recent novel technique employed, is the scanning of roots against the walls of chambers made of perspex. In addition to deep tillage, shallow soils can be improved by ridging while loosening of the inter‐row area is an option in existing vineyards that perform poorly. This should only be done when poor performance is due to soil compaction. Grapevine response to root pruning depends particularly on timing, severity of pruning and the presence or absence of roots in the inter‐row area. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Johan VAN ZYL and Eduard HOFFMAN

Soil Science Department, Stellenbosch University, Stellenbosch, 7602, Republic of South Africa

Contact the author

Keywords

soil compaction; penetrometer; root studies; re‐compaction; root pruning; plant holes

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Using remotely sensed (UAV) and in situ field measurements to describe grapevine canopy characteristics

Row orientation and canopy management are essential for high quality grapevine production. Microclimatic conditions of the leaves and fruits can be influenced by the canopy geometry. Remote sensing is a very promising tool to describe vegetative growth and physiological behavior of vineyards. However, the correlation between remotely sensed data and in situ field measurements has been described scarcely in the scientific literature so far. The aim of the study was to correlate remotely sensed data obtained with Unmanned Aerial Vehicle (UAV) with in situ field measurements to describe canopy structure.

The effect of viticultural treatment on grape juice chemical composition

Viticultural management regimes influence the soil elemental profile of a vineyard, determining the microbial community distribution, insect life, and plant biochemistry and physiology

Exploring the factors affecting spatio‐temporal variation in grapevine powdery mildew

The spatial distribution of powdery mildew is often heterogeneous between neighboring plots, with higher disease pressure in certain places

Caractérisation et valorisation des terroirs de l’appellation d’origine contrôlée Puisseguin-Saint-Emilion

Le terroir viticole, qui est la base de la délimitation des aires d’Appellation d’Origine Contrôlée, est une notion complexe dans laquelle sont en interaction la vigne, les facteurs naturels tels que le sol, le climat, ainsi que le facteur humain à travers les pratiques des viticulteurs. Le terroir conditionne la composition des raisins et ainsi la qualité et la typicité des vins qui en sont issus.

Influence of ‘pinotage’ defoliation on fruit and wine quality

Among the different management techniques in Viticulture, which have
been developed with the purpose of optimizing the interception of sunlight, the photosynthetic capacity of
the plant and the microclimate of the clusters, especially in varieties that show excess vigor, the management of defoliation presents great importance. The defoliation consists of the removal of leaves that cover or that are in direct contact with the curls, which can cause physical damages in the berries, and aims to balance the relation between part area and number of fruits, providing the aeration and insolation in the interior of the vineyard, as well as reduce the incidence of rot in order to achieve greater efficiency in phytosanitary treatments and quality musts.