GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Root development and the performance of grapevines in response to natural as well as man‐made soil impediments

Root development and the performance of grapevines in response to natural as well as man‐made soil impediments

Abstract

Context and purpose of the study ‐ The majority of soils used for wine and table grape production in South Africa are notoriously shallow, i.e. they are restricting root penetration. The result of such shallow soils is uneven and poor vineyard performance that eventually lead to unprofitable vineyards. The purpose of this study was to investigate soil impediments to root growth, methods to detect such impediments, and practices to alleviate obstructions before planting, as well as in existing vineyards.

Material and methods ‐ Many investigations in South Africa have addressed the reasons for poor grapevine root development and methods to rectify this detrimental factor. This large body of knowledge is not only spread over different generations of researchers and experts, but also fragmented among many articles and journals. Starting with recommendations for “dynamite‐ ploughing” in 1912, all research on soil profile modification was reviewed and a synopsis made regarding soil conditions, root studies, grapevine response and corrective measures.

Results ‐Natural soil compaction is the main cause of root restriction in the majority of vineyard soils in the Western Cape, but man‐made compaction through vehicle traffic and implement use occurs. Acid soils, i.e. pHKCl< 5.5 are commonly found in the coastal areas of the Western Cape. Further impediments to grapevine root penetration include dense clay in the subsoil, various types of hardpan, water tables, rock and sharp transitions between soil layers of different textures. Plant holes incorrectly made can be a serious impediment to root distribution and poor growth of young vines. Penetrometer measurement of soil resistance is the most practical, easiest and quickest method to detect the degree, position and extent of soil compaction. Grapevine root penetration is drastically impeded above 2000 kPa penetrometer readings. The EM38 apparatus that measures the bulk electrical conductivity of the soil, is also increasingly used to determine root restricting layers in the soil. Grapevine root distribution is the most reliable, direct and accurate indicator of soil conditions. Root distribution of grapevines is generally shaped by soil conditions and cultivation practices and not by genetic traits of the rootstock. Scientific root studies in South Africa date back to the 1930’s and include the profile wall method, core sampling, glass wall methods, excavation methods. A recent novel technique employed, is the scanning of roots against the walls of chambers made of perspex. In addition to deep tillage, shallow soils can be improved by ridging while loosening of the inter‐row area is an option in existing vineyards that perform poorly. This should only be done when poor performance is due to soil compaction. Grapevine response to root pruning depends particularly on timing, severity of pruning and the presence or absence of roots in the inter‐row area. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Johan VAN ZYL and Eduard HOFFMAN

Soil Science Department, Stellenbosch University, Stellenbosch, 7602, Republic of South Africa

Contact the author

Keywords

soil compaction; penetrometer; root studies; re‐compaction; root pruning; plant holes

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Phenolic extraction and mechanical properties of skins and seeds during maceration of four main italian red wine grape varieties

AIM: Red grape varieties are characterized by different phenolic contents (prominently tannins and anthocyanins) found in skins and seeds.

Climate change and viticulture in Nordic Countries and the Helsinki area

The first vineyards in Northern Europe were in Denmark in the 15th century, in the southern parts of Sweden and Finland in the 18th century at 55–60 degrees latitude. The grapes grown there have not been made into wine, but the grapes have been eaten at festive tables. The resurgence of viticulture has started with global warming, and currently the total area of viticulture in the Nordic countries, including Norway, is estimated to be 400–500 hectares, most of which is in Denmark. Southern Finland, like all southern parts of Northern Europe, belongs to the cool-cold winegrowing area.

Lipids at the crossroads of protection: lipid signalling in grapevine defence mechanisms

Understanding grapevine molecular processes and the underlying defence responses is vital for developing sustainable disease control strategies. Lipid signalling pathways, involving the synthesis and degradation of lipid molecules, have emerged as a key regulator in plant defence against pathogens. This study aims to elucidate the role of fatty acids and lipid signalling in grapevine’s defence response to P. viticola infection. The expression of lipid metabolism-related as well as lipid signalling genes was analysed, by qPCR, in three grapevine genotypes: Chardonnay (susceptible), Regent (tolerant) with Rpv3-1 resistance loci, and Sauvignac (resistant) harbouring a pyramid of Rpv12 and Rpv3-1 resistance loci.

Contribution of grape seeds to evolution of acetaldehyde, pigments and tannins reactive towards salivary proteins of red wine over time

This study investigated the impact of the gsk/gse ratio on the evolution of acetaldehyde and of major phenolic compounds of aglianico wine in wine like solution and real wine. Four model solutions and the correspondant control wines were prepared. The natural weight ratio between grape skins and seeds was determined on the real grapes, and a control wine was obtained from those.

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2
One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.