GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Root development and the performance of grapevines in response to natural as well as man‐made soil impediments

Root development and the performance of grapevines in response to natural as well as man‐made soil impediments

Abstract

Context and purpose of the study ‐ The majority of soils used for wine and table grape production in South Africa are notoriously shallow, i.e. they are restricting root penetration. The result of such shallow soils is uneven and poor vineyard performance that eventually lead to unprofitable vineyards. The purpose of this study was to investigate soil impediments to root growth, methods to detect such impediments, and practices to alleviate obstructions before planting, as well as in existing vineyards.

Material and methods ‐ Many investigations in South Africa have addressed the reasons for poor grapevine root development and methods to rectify this detrimental factor. This large body of knowledge is not only spread over different generations of researchers and experts, but also fragmented among many articles and journals. Starting with recommendations for “dynamite‐ ploughing” in 1912, all research on soil profile modification was reviewed and a synopsis made regarding soil conditions, root studies, grapevine response and corrective measures.

Results ‐Natural soil compaction is the main cause of root restriction in the majority of vineyard soils in the Western Cape, but man‐made compaction through vehicle traffic and implement use occurs. Acid soils, i.e. pHKCl< 5.5 are commonly found in the coastal areas of the Western Cape. Further impediments to grapevine root penetration include dense clay in the subsoil, various types of hardpan, water tables, rock and sharp transitions between soil layers of different textures. Plant holes incorrectly made can be a serious impediment to root distribution and poor growth of young vines. Penetrometer measurement of soil resistance is the most practical, easiest and quickest method to detect the degree, position and extent of soil compaction. Grapevine root penetration is drastically impeded above 2000 kPa penetrometer readings. The EM38 apparatus that measures the bulk electrical conductivity of the soil, is also increasingly used to determine root restricting layers in the soil. Grapevine root distribution is the most reliable, direct and accurate indicator of soil conditions. Root distribution of grapevines is generally shaped by soil conditions and cultivation practices and not by genetic traits of the rootstock. Scientific root studies in South Africa date back to the 1930’s and include the profile wall method, core sampling, glass wall methods, excavation methods. A recent novel technique employed, is the scanning of roots against the walls of chambers made of perspex. In addition to deep tillage, shallow soils can be improved by ridging while loosening of the inter‐row area is an option in existing vineyards that perform poorly. This should only be done when poor performance is due to soil compaction. Grapevine response to root pruning depends particularly on timing, severity of pruning and the presence or absence of roots in the inter‐row area. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Johan VAN ZYL and Eduard HOFFMAN

Soil Science Department, Stellenbosch University, Stellenbosch, 7602, Republic of South Africa

Contact the author

Keywords

soil compaction; penetrometer; root studies; re‐compaction; root pruning; plant holes

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Vine-growing zoning of the municipal territories of Ronda and Arriate (Malaga, Spain), « Sierras de Málaga » registered appellation of origin mark

The aim of this communication is the study of the Ronda and Arriate municipal territories environment in order to define and to establish the main physical factors in relation to vine-growing land use. The vine-growing zoning proposed is based on geopedological and climatic features.

The use of elicitors in the vineyard to mitigate the effects of climate change on wine quality

The wine sector is being directly affected by climate change. Temperatures above 30ºC can cause a lag between the ripening of the berry pulp (a rapid increase in sugar content) and the skin

Volatile fraction of young Cabernet Sauvignon from Santa Catarina State, a new terroir in Brazil

A total of 52 volatile compounds were measured in varietal Cabernet Sauvignon wines from four sites in Santa Catarina State (Brazil), over two consecutive vintages (2004 and 2005).

Exploring the regulatory role of the grapevine MIXTA homologue in cuticle formation and abiotic stress resilience

The outer waxy layer of plant aerial structures, known as the cuticle, represents an important trait that can be targeted to increase plant tolerance against abiotic stresses exacerbated by environmental transition. The MIXTA transcription factor, member of the R2R3-MYB family, is known to affect conical shape of petal epidermal cells in Anthirrinum, cuticular thickness in tomato fruit and trichome formation and morphology in several crops. The aim of this study was to investigate the role of the grapevine MIXTA homologue by phenotypic and molecular characterization of overexpressing and knock-out grapevine lines.

Study on the impact of clone on the varietal aroma of Xinomavro

It is well documented that varietal aroma is an important parameter of wine quality. Chemical compounds responsible for wine varietal aroma are sourced from secondary grape metabolites. Until today little research is conducted on the influence of vine clone on the grape aromatic content of Greek grape varieties. Xinomavro (Vitis vinifera L.) is one of the most important Greek grape varieties, valuable for the wine industry of Northern Greece since it contributes to the production of PDO wine of Naoussa, Amindeo and Goumenissa.