GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Root development and the performance of grapevines in response to natural as well as man‐made soil impediments

Root development and the performance of grapevines in response to natural as well as man‐made soil impediments

Abstract

Context and purpose of the study ‐ The majority of soils used for wine and table grape production in South Africa are notoriously shallow, i.e. they are restricting root penetration. The result of such shallow soils is uneven and poor vineyard performance that eventually lead to unprofitable vineyards. The purpose of this study was to investigate soil impediments to root growth, methods to detect such impediments, and practices to alleviate obstructions before planting, as well as in existing vineyards.

Material and methods ‐ Many investigations in South Africa have addressed the reasons for poor grapevine root development and methods to rectify this detrimental factor. This large body of knowledge is not only spread over different generations of researchers and experts, but also fragmented among many articles and journals. Starting with recommendations for “dynamite‐ ploughing” in 1912, all research on soil profile modification was reviewed and a synopsis made regarding soil conditions, root studies, grapevine response and corrective measures.

Results ‐Natural soil compaction is the main cause of root restriction in the majority of vineyard soils in the Western Cape, but man‐made compaction through vehicle traffic and implement use occurs. Acid soils, i.e. pHKCl< 5.5 are commonly found in the coastal areas of the Western Cape. Further impediments to grapevine root penetration include dense clay in the subsoil, various types of hardpan, water tables, rock and sharp transitions between soil layers of different textures. Plant holes incorrectly made can be a serious impediment to root distribution and poor growth of young vines. Penetrometer measurement of soil resistance is the most practical, easiest and quickest method to detect the degree, position and extent of soil compaction. Grapevine root penetration is drastically impeded above 2000 kPa penetrometer readings. The EM38 apparatus that measures the bulk electrical conductivity of the soil, is also increasingly used to determine root restricting layers in the soil. Grapevine root distribution is the most reliable, direct and accurate indicator of soil conditions. Root distribution of grapevines is generally shaped by soil conditions and cultivation practices and not by genetic traits of the rootstock. Scientific root studies in South Africa date back to the 1930’s and include the profile wall method, core sampling, glass wall methods, excavation methods. A recent novel technique employed, is the scanning of roots against the walls of chambers made of perspex. In addition to deep tillage, shallow soils can be improved by ridging while loosening of the inter‐row area is an option in existing vineyards that perform poorly. This should only be done when poor performance is due to soil compaction. Grapevine response to root pruning depends particularly on timing, severity of pruning and the presence or absence of roots in the inter‐row area. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Johan VAN ZYL and Eduard HOFFMAN

Soil Science Department, Stellenbosch University, Stellenbosch, 7602, Republic of South Africa

Contact the author

Keywords

soil compaction; penetrometer; root studies; re‐compaction; root pruning; plant holes

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Response of Albariño to local environmental conditions in Uruguay

Albariño is a white cultivar that has been recently promoted in Uruguay due to its ability to maintain high berry quality even in adverse climate conditions during ripening. This study aims to assess the effect of different topographic conditions on Albariño agronomic behavior and oenological potential.

Effect of grape harvest time on the metabolomic profile of ribolla gialla monovarietal sparkling wines

The timing of grape harvest is crucial factor to be considered in the winemaking process, as delayed harvest increases the content of varietal aromas, esters, aldehydes

Highlighting the several chemical situations of Dimethyl sulfide in wine

Dimethyl sulfide (DMS) is a compound that accumulate in wine for the early years of ageing 1. During this stage, which is often carried out in the bottle, the environmental conditions are conducive to the release of DMS from its precursors, already present in grapes2

Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

The use of bentonite in oenology rounds around the limpidity and the stability that determine consumer acceptability. As a matter of fact, the haze formation in wine reduces its commercial value and makes it unacceptable for sale. Stabilization treatments are, therefore, essential to ensure a long-time limpidity and to forecast the formation of deposits in the bottle. Bentonite that is normally used in oenology for clarifying-fining purpose, shows a natural clay-based mineral structure allowing it to swell and to jelly in water and hence in must and wine.

Stomatal restrictions to photosynthesis in grapevine cultivars grown in a semiarid environment

Diurnal changes in the leaves of field-grown grapevine (Vitis vinifera L.) cultivars Syrah and Tempranillo were followed over summer 2009 with respect to gas exchanges. Net photosynthetic rate (AN) of both cultivars rapidly increased in the morning, decreasing slowly until the late afternoon, when reached the lowest values.