GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Root development and the performance of grapevines in response to natural as well as man‐made soil impediments

Root development and the performance of grapevines in response to natural as well as man‐made soil impediments

Abstract

Context and purpose of the study ‐ The majority of soils used for wine and table grape production in South Africa are notoriously shallow, i.e. they are restricting root penetration. The result of such shallow soils is uneven and poor vineyard performance that eventually lead to unprofitable vineyards. The purpose of this study was to investigate soil impediments to root growth, methods to detect such impediments, and practices to alleviate obstructions before planting, as well as in existing vineyards.

Material and methods ‐ Many investigations in South Africa have addressed the reasons for poor grapevine root development and methods to rectify this detrimental factor. This large body of knowledge is not only spread over different generations of researchers and experts, but also fragmented among many articles and journals. Starting with recommendations for “dynamite‐ ploughing” in 1912, all research on soil profile modification was reviewed and a synopsis made regarding soil conditions, root studies, grapevine response and corrective measures.

Results ‐Natural soil compaction is the main cause of root restriction in the majority of vineyard soils in the Western Cape, but man‐made compaction through vehicle traffic and implement use occurs. Acid soils, i.e. pHKCl< 5.5 are commonly found in the coastal areas of the Western Cape. Further impediments to grapevine root penetration include dense clay in the subsoil, various types of hardpan, water tables, rock and sharp transitions between soil layers of different textures. Plant holes incorrectly made can be a serious impediment to root distribution and poor growth of young vines. Penetrometer measurement of soil resistance is the most practical, easiest and quickest method to detect the degree, position and extent of soil compaction. Grapevine root penetration is drastically impeded above 2000 kPa penetrometer readings. The EM38 apparatus that measures the bulk electrical conductivity of the soil, is also increasingly used to determine root restricting layers in the soil. Grapevine root distribution is the most reliable, direct and accurate indicator of soil conditions. Root distribution of grapevines is generally shaped by soil conditions and cultivation practices and not by genetic traits of the rootstock. Scientific root studies in South Africa date back to the 1930’s and include the profile wall method, core sampling, glass wall methods, excavation methods. A recent novel technique employed, is the scanning of roots against the walls of chambers made of perspex. In addition to deep tillage, shallow soils can be improved by ridging while loosening of the inter‐row area is an option in existing vineyards that perform poorly. This should only be done when poor performance is due to soil compaction. Grapevine response to root pruning depends particularly on timing, severity of pruning and the presence or absence of roots in the inter‐row area. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Johan VAN ZYL and Eduard HOFFMAN

Soil Science Department, Stellenbosch University, Stellenbosch, 7602, Republic of South Africa

Contact the author

Keywords

soil compaction; penetrometer; root studies; re‐compaction; root pruning; plant holes

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Bilan de l’impact des pratiques viticoles sur la qualité biologique des sols

Dans le cadre de TerclimPro 2025, Laure Gontier a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8481

Natural glycolipids for the control of spoilage organisms in red wine

A natural glycolipid mixture obtained from the edible mushroom dacryopinax spathularia (“glycolipids”) is known to be an effective and approved antimicrobial treatment in non-alcoholic beverages at concentrations ranging from 5 – 100 mg/l. It has found a place alongside DMDC for the provision of microbial stability in soft drinks. These properties make the natural and sustainably produced glycolipids a promising candidate for the supplementation or replacement of SO2 in different winemaking processes.

Caracterización sensorial y preferencias de los consumidores en vinos de crianza biológica elaborados a diferente graduación alcohólica

Las tendencias actuales del mercado apuntan hacia el consumo de vinos con menor contenido en alcohol, y, por otra parte, de vinos con características especiales y diferenciadoras, siendo los vinos con indicación geográfica o denominación de origen los más demandados.

Preliminary study of extraction of polysaccharides from pomace by high powered ultrasonic combined with enzymes

Red grape pomace can be an important source of polysaccharides, but currently they are little studied and even less with viable and environmental extraction processes (green extraction). These green techniques must be able to break the cell wall so that the compounds contained in the cells, including polysaccharides, are released and can have a great influence on extraction yields, the chemical structure of polysaccharides and applications in wines. Amongst the emerging green techniques most applied to the extraction of bioactive compounds, such as polysaccharides, high-power ultrasound (US) and enzyme-assisted extraction stand out.

Rationalizing The Wine Nucleophilic Competition For Quinone Addition

loss and color browning which lead to wine unacceptance by consumers. These changes are mainly driven by the consumption of oxygen by polyphenols leading to the production of quinones which are oxidant compounds. Quinones can react with numerous nucleophilic compounds notably aromatic thiols, decreasing the aromatic bouquet of the wine.