terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF THE WINES’ QUALITY ON THE WINE DISTILLATES’ ORGANOLEPTIC PROFILE

IMPACT OF THE WINES’ QUALITY ON THE WINE DISTILLATES’ ORGANOLEPTIC PROFILE

Abstract

Brandy de Jerez (BJ) is a spirit drink made exclusively from spirits and wine distillates and is characterized by the use of casks for aging that previously contained Sherries. The quality and sensory com- plexity of BJ depend on the raw materials and some factors: grape variety, conditions during processing the wine and its distillation, as well as the aging in the cask. Therefore, the original compounds of the grapes from which it comes are of great interest (1 y 2) being in most cases the Airén variety. Their relationship with the quality of the musts and the wines obtained from them has been studied (3) and varies each year of harvest depending on the weather conditions (4). It is also influenced by specific viticul- tural techniques and ripeness (5). The organoleptic profile and physicochemical characteristics of wine distillates depend on the wine used to produce them, as the distilled product retains a flavor and aroma characteristic of the raw material used. In the Marco de Jerez area, the grape juice (must) is obtained under conditions that can contribute with herbaceous compounds and tannins that are not desirable for wine quality, and facilitates the drainage of the must during pressing, improving the extraction yield. The pressure applied plays an important role and, depending on the level applied, the following are obtained: “primera yema” (PY)(lower pressure) “segunda yema”(SY), -average pressure-, and finally “mosto prensa” (MP), (higher presurre). PY, SY and MP have different profiles and qualities and, therefore, will directly influence the quality of the distillates. Traditionally, the wines distilled for the production of Brandy de Jerez usually come from other D.O.’s and are characterized by poor quality. For this reason, it is interesting to fully characterize four different wines of the three qualities described (PY, SY and MP). The classic oenological parameters, polyphenol, organic acid profiles and volatile compounds are determined. After the complete characterization, all wine qualities will be distilled under the same conditions to determine if these distinguishing characteristics are transferred to the distillates obtained. A better knowledge of the raw materials will allow to improve the elaboration and manufacturing of products from wine distillates and to develop new products, being of great industrial interest. From a scientific point of view, it is of great interest as it is the first study to evaluate the influence of the press on the organoleptic quality of the distillates.

 

1. Versini, G.; Franco, M.A.; Moser, S.; Barchetti, P.; Manca, G. (2009). Food Chem., 113, 1176 1183
2. López-Vázquez, C.; Bollaín, M.H.; Moser, S.; Orriols, I. (2010). J. Agric. Food Chem., 58, 9657-9665.
3. Barba, P.; González, M.A.; Pueyo, E.; Martín, P.J.; Cabezudo, M.D. (1992). Concordancia de las características químicas y sen-soriales de los mostos Airén con el perfil sensorial de las uvas. XX Congreso Mundial de la Viña y el Vino y 72ª Asamblea General de la O.I.V. Madrid.
4. Lee, J.E.; Hwang, G.S.; Van Den Berg, F.; Lee, C.H.; Hong, Y.S. (2009). Anal. Chim. Acta, 648 (1), 71-76
5. Valcárcel Muñoz, M.C. (2006). Incidencia de técnicas vitícolas y enológicas en el potencial aromático de variedades de vid en clima cálido. Tesis Doctoral. Universidad de Cádiz

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Guerrero-Chanivet, María¹; Trujillo-Quintana, Miguel Ángel¹; Florido-Barba, Antonio¹; Rendón-Gómez, Rafael¹; Marrufo-Curtido, Almudena¹*

1. Departamento de Investigación y Desarrollo de Bodegas Fundador S.L.U., C/San Ildefonso, n 3, 11403 Jerez de la Frontera, Cádiz, Spain. 

Contact the author*

Keywords

wine spirit, volatil compounds, destillation, organoleptic quality

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

Wine regions are getting warmer as average temperatures continue raising affecting grape growth, berry composition and wine production. Berry quality was evaluated in plants of Vitis vinifera cv Syrah grafted on two rootstocks, Paulsen (PL1103) and SO4, and grown under two salinity concentrations (LS:0.7dS/m and HS:2.5dSm-1) in combination with two irrigation regimes (HW:133% and CW:100%), being the seasonal water application 483mm (control, 100%). Spectrophotometer measurements from berry skin during veraison and harvest stages and from “young” wine samples, were indicative of the stressors effect and the mediation of the rootstocks. At veraison (i) total phenolics content were high under LSHW (0.7dSm-1 and high water conditions) for SO4 and PL1103.

IDENTIFICATION AND LEVELS OF PHENOLIC COMPOUNDS (TANINS, ANTHO-CYANS) IN RED VARIETAL WINES (PROKUPAC AND BLACK TAMJANIKA) FROM SERBIA

The phenolic compounds of red wines represent a source of numerous benefits for human health, which is why they are a constant subject of scientific research. Winemaking in Serbia has a growing economic significance, with particularly autochthonous varieties included [1]. This research identifies and quantifies phenolic compounds of Serbian red varietal wines of Prokupac and Black Tamjanika varieties. Quantification of the level of phenolics has been conducted, including molecular tannins [(+)-catechin, (-)-epicatechin, procyanidin dimers B1, B2, B3, B4], molecular anthocyanins, and the mean degree of polymerization of tannins by HPLC by UV detection, total antioxidant capacity via spectrophotometric methods and chromatic characteristics via CIELAB.

Searching for the sweet spot: a focus on wine dealcoholization

It is well known that the vinification of grapes at full maturation can produce rich, full-bodied wines,
with intense and complex flavour profiles. However, the juice obtained from such grapes may have very
high sugar concentration, resulting in wines with an excessive concentration of ethanol. In addition, the decoupling between technological maturity and phenolic/aromatic one due to global warming, exacerbates this problem in some wine-growing regions. In parallel with the increase of the mean alcohol content of wines on the market, also the demand for reduced alcohol beverages has increased in recent years, mainly as a result of health and social concerns about the risks related to the consumption of alcohol.

SENSORY CHARACTERIZATION OF COGNAC EAUX-DE-VIE AGED IN BARRELS REPRESENTING DIFFERENT TOASTING PROCESS

Cognac is an outstanding french wine spirit appreciated around the world and produced exclusively in the Nouvelle-Aquitaine region, and more precisely in the Cognac area. According to AOC regulations (Appellation D’origine Controlée), the spirit required at least 2 years of continuous ageing in oak barrels to be granted the title of Cognac. The oak wood will import color, structure and organoleptic complexity. The different steps during barrel-making process, such as seasoning and toasting, influence the above quality attributes in both wines and spirits.

EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

Most of the effects of ultrasound (US) result from the collapse of bubbles due to cavitation. The shockwave produced is associated with shear forces, along with high localised temperatures and pressures. However, the high-speed stream, radical species formation, and heat generated during sonication may also affect the stability of some enzymes and proteins, depending on their chemical structure. Recently, Ce-lotti et al. (2021) reported the effects of US on protein stability in wines. To investigate this further, the effect of temperature (40°C and 70°C; 60s), sonication (20 kHz and 100 % amplitude, for 20s and 60s, leading to the same temperatures as above, respectively), in combination with Aspergillopepsins I (AP-I) supplementation (100 μg/L), was studied on unstable protein concentration (TLPs and chitinases) using HPLC with an UV–Vis detector in a TLPs-supplemented model system and in an unstable white wine.