terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF THE WINES’ QUALITY ON THE WINE DISTILLATES’ ORGANOLEPTIC PROFILE

IMPACT OF THE WINES’ QUALITY ON THE WINE DISTILLATES’ ORGANOLEPTIC PROFILE

Abstract

Brandy de Jerez (BJ) is a spirit drink made exclusively from spirits and wine distillates and is characterized by the use of casks for aging that previously contained Sherries. The quality and sensory com- plexity of BJ depend on the raw materials and some factors: grape variety, conditions during processing the wine and its distillation, as well as the aging in the cask. Therefore, the original compounds of the grapes from which it comes are of great interest (1 y 2) being in most cases the Airén variety. Their relationship with the quality of the musts and the wines obtained from them has been studied (3) and varies each year of harvest depending on the weather conditions (4). It is also influenced by specific viticul- tural techniques and ripeness (5). The organoleptic profile and physicochemical characteristics of wine distillates depend on the wine used to produce them, as the distilled product retains a flavor and aroma characteristic of the raw material used. In the Marco de Jerez area, the grape juice (must) is obtained under conditions that can contribute with herbaceous compounds and tannins that are not desirable for wine quality, and facilitates the drainage of the must during pressing, improving the extraction yield. The pressure applied plays an important role and, depending on the level applied, the following are obtained: “primera yema” (PY)(lower pressure) “segunda yema”(SY), -average pressure-, and finally “mosto prensa” (MP), (higher presurre). PY, SY and MP have different profiles and qualities and, therefore, will directly influence the quality of the distillates. Traditionally, the wines distilled for the production of Brandy de Jerez usually come from other D.O.’s and are characterized by poor quality. For this reason, it is interesting to fully characterize four different wines of the three qualities described (PY, SY and MP). The classic oenological parameters, polyphenol, organic acid profiles and volatile compounds are determined. After the complete characterization, all wine qualities will be distilled under the same conditions to determine if these distinguishing characteristics are transferred to the distillates obtained. A better knowledge of the raw materials will allow to improve the elaboration and manufacturing of products from wine distillates and to develop new products, being of great industrial interest. From a scientific point of view, it is of great interest as it is the first study to evaluate the influence of the press on the organoleptic quality of the distillates.

 

1. Versini, G.; Franco, M.A.; Moser, S.; Barchetti, P.; Manca, G. (2009). Food Chem., 113, 1176 1183
2. López-Vázquez, C.; Bollaín, M.H.; Moser, S.; Orriols, I. (2010). J. Agric. Food Chem., 58, 9657-9665.
3. Barba, P.; González, M.A.; Pueyo, E.; Martín, P.J.; Cabezudo, M.D. (1992). Concordancia de las características químicas y sen-soriales de los mostos Airén con el perfil sensorial de las uvas. XX Congreso Mundial de la Viña y el Vino y 72ª Asamblea General de la O.I.V. Madrid.
4. Lee, J.E.; Hwang, G.S.; Van Den Berg, F.; Lee, C.H.; Hong, Y.S. (2009). Anal. Chim. Acta, 648 (1), 71-76
5. Valcárcel Muñoz, M.C. (2006). Incidencia de técnicas vitícolas y enológicas en el potencial aromático de variedades de vid en clima cálido. Tesis Doctoral. Universidad de Cádiz

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Guerrero-Chanivet, María¹; Trujillo-Quintana, Miguel Ángel¹; Florido-Barba, Antonio¹; Rendón-Gómez, Rafael¹; Marrufo-Curtido, Almudena¹*

1. Departamento de Investigación y Desarrollo de Bodegas Fundador S.L.U., C/San Ildefonso, n 3, 11403 Jerez de la Frontera, Cádiz, Spain. 

Contact the author*

Keywords

wine spirit, volatil compounds, destillation, organoleptic quality

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IDENTIFYING POTENTIAL CHEMICAL MARKERS RESPONSIBLE FOR THE PERMISSIVENESS OF BORDEAUX RED WINES AGAINST BRETTANOMYCES BRUXELLENSIS USING UNTARGETED METABOLOMICS

All along the red winemaking process, many microorganisms develop in wine, some being beneficial and essential, others being feared spoilers. One of the most feared microbial enemy of wine all around the world is Brettanomyces bruxellensis. Indeed, in red wines, this yeast produces volatile phenols, molecules associated with a flavor described as “horse sweat”, “burnt plastic” or “leather”. To produce significant and detectable concentrations of these undesired molecules, the yeasts should first grow and become numerous enough. Even if the genetic group of the strain present and the cellar temperature may modulate the yeast growth rate¹ and thus the risk of spoilage, the main factor seems to be the wines themselves, some being much more permissive to B. bruxellensis development than others.

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.
Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.

A synthesis approach on the impact of elevated CO2 on berry physiology and yield of Vitis vinifera

Besides the increase in global mean temperature the second main challenge of a changing climate is the increase in atmospheric carbon dioxide (CO2) in relation to physiology and yield performance of grapevines. The benefits of increasing CO2 levels under greenhouse environment or open field studies have been well investigated for various annual crops. Research under free carbon dioxide enrichment on field-grown perennial plants such as grapevines is limited to a few studies. Further, chamber and greenhouse experiments have been conducted mostly on potted vines under eCO2 conditions.

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effer-vescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most prestigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].