terclim by ICS banner
IVES 9 IVES Conference Series 9 PAIRING WINE AND STOPPER: AN OLD ISSUE WITH NEW ACHIEVEMENTS

PAIRING WINE AND STOPPER: AN OLD ISSUE WITH NEW ACHIEVEMENTS

Abstract

The sensory characteristics of wine are a topic studied by several researchers over time, but it continues to be a current and challenging subject. These characteristics are fundamental for the consumer acceptability, which has increasingly aroused their interest to modulate them in line with current market trends and innovation demands. The wine physical-chemical and sensory properties depend on a wide set of factors: they begin to be designed in the vineyard and are later constructed during the various stages of winemaking. Afterwards, the wine is placed in bottles and stored or commercialized. During the storage of bottled wine several physical-chemical changes may occur, modulated by the position of the bottle, type of closure, temperature, and storage time, which impact the oxygen entrance ratio. In fact, the permeability of the stoppers to oxygen is considered one of the most important properties that influences wine sensorial properties during post-bottling (1,2). In the present study, red and white table wines stored in a horizontal position for 17.5 (white wines) and 35 months (red wines), using natural cork stoppers, different types of microagglomerated cork stoppers and a synthetic one, were characterized. To achieve a holistic view of the changes that may have occurred during bottling, a set of analysis were implemented, namely, determination of volatile components by comprehensive gas chromatogra- phymass spectrometry with time of flight analyser (GC×GC-ToFMS), determination of phenolic profile by ultra-high-performance liquid chromatography, coupled with tandem mass spectrometry (UHPLC- DAD-MSn), sensorial analysis performed by a trained panel, and also determination of colour, acidity (total and volatile), SO₂ (free and total), and pH. The strategy used in this study provides new chemical data that allow evaluating the effect of the stopper among different type of wines. Physical-chemical and sensory analysis unveiled that the type of stopper modulates the characteristics of the wine, and its selection may be used as an oenological tool in the construction of the wine identity.

Acknowledgments: This work was developed within the scope of the projects LAQV-REQUIMTE (UIDB/50006/2020 and UIDP/50006/2020) and CICECO (UIDB/50011/2020, UIDP/50011/2020 & LA/P/0006/2020), financed by national funds through the FCT/MEC (PID-DAC). FCT is also acknowledged for the research contract under Scientific Employment Stimulus to S. Santos (2021.03348.CEECIND).

 

1. Azevedo J., Lopes P., Mateus N., Freitas V. Cork, a Natural Choice to Wine? Foods 2022, 11, 2638. https://doi.org/10.3390/foods11172638
2. Echave J., Barral M., Fraga-Corral M., Prieto M. A., Simal-Gandara J. Bottle Aging and Storage of Wines: A Review, Molecules 2021, 26, 713. https://doi.org/10.3390/molecules26030713

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

André Viana¹, Cátia Martins¹, Sónia A.O. Santos ², Armando J. D. Silvestre², José Pedro Machado², Sílvia M. Rocha¹

1. Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, Campus Universitário Santiago,3810-193 Aveiro, Portugal
2. Department of Chemistry & CICECO, University of Aveiro, Campus Universitário Santiago,3810-193 Aveiro, Portugal
3. MASILVA CORTIÇAS, Rua Central das Regadas Nº49, 4535-167 Mozelos, Portugal

Contact the author*

Keywords

wine storage, stoppers, volatile profile, phenolic profile

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

The importance of the non-Saccharomyces yeasts (NSY) in winemaking has been extensively reviewed in the past for their aromatic or bioprotective capacity while, recently their antioxidant/antiradical potential has emerged under winemaking conditions. In the literature the antioxidant potential of NSY was solely explored through their capacity to improve glutathione (GSH) content during alcoholic fermen- tation [1], while more and more studies pointed out the activity of the non-glutathione soluble fraction released by yeasts [2].

AN AUTOMATIC CANOPY COOLING SYSTEM TO COPE WITH THE THERMAL-RADIATIVE STRESSES IN THE PIGNOLETTO WHITE GRAPE

In recent years characterized by hot dry summers, the implementation of innovative irrigation tools in the vineyard represents a crucial challenge to ensure optimal production and to avoid excess of water consumption. It is known that the grapevine reacts to multiple stresses – i.e., high temperatures and wa- ter shortage – through adaptive mechanisms that are detrimental to the yield. Furthermore, this condi- tion is usually aggravated by high solar radiation, which could negatively affect the phenolic composi- tion of the grapes. Therefore, a cooling system has been developed aiming to reduce bunches’ sunburn damage.

WINE LEES AS A SOURCE OF NITROGEN FOR OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION PERFORMANCE

Malolactic fermentation (MLF) is a desired process in red and acidic white wines, after alcoholic fermentation (AF), carried out by the lactic acid bacterium (LAB) Oenococcus oeni. The advantages are an increase of pH, microbiological stabilization and organoleptic improvement of the final wine. However, the presence of stress factors such as ethanol, low pH, high total SO2, lack of nutrients and presence of inhibitors, could affect the successful completion of MLF [1]. Changes in amino acid composition and deficiencies in peptides after AF, showed that MLF can be delayed, signaling its importance for bacterial growth and L-malic acid degradation during MLF [2].

VOLTAMETRIC PROFILING OF RED WINE COMPOSITION DURING MACERATION: A STUDY ON FOUR GRAPE VARIETIES

During red wine vinification, maceration allows the must, and consequently the wine, to be enriched with several compounds that contribute to the creation of the typical organoleptic characteristics of red wines. Among these, extraction of polyphenols (PPs) during maceration is a major process of enological interest.
The purpose of this study was the evaluate the suitability of a rapid analytical approach based in linear sweep voltammetry to monitor PPs extraction during vinification.

INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

Wine grapes exposed to wildfire smoke have resulted in wines with burnt and ashy sensory characteristics¹, that are undesirable qualities in wine. In extreme wildfire events, this can lead to total loss of grape crop. Currently there are no effective solutions in the market to prevent the uptake of smoke compounds into grapes. In this study, previously developed innovative film coatings were tested to analyze their effectiveness in reducing smoke phenol absorption². Four different cellulose nanofiber-based film types were investigated.