terclim by ICS banner
IVES 9 IVES Conference Series 9 PAIRING WINE AND STOPPER: AN OLD ISSUE WITH NEW ACHIEVEMENTS

PAIRING WINE AND STOPPER: AN OLD ISSUE WITH NEW ACHIEVEMENTS

Abstract

The sensory characteristics of wine are a topic studied by several researchers over time, but it continues to be a current and challenging subject. These characteristics are fundamental for the consumer acceptability, which has increasingly aroused their interest to modulate them in line with current market trends and innovation demands. The wine physical-chemical and sensory properties depend on a wide set of factors: they begin to be designed in the vineyard and are later constructed during the various stages of winemaking. Afterwards, the wine is placed in bottles and stored or commercialized. During the storage of bottled wine several physical-chemical changes may occur, modulated by the position of the bottle, type of closure, temperature, and storage time, which impact the oxygen entrance ratio. In fact, the permeability of the stoppers to oxygen is considered one of the most important properties that influences wine sensorial properties during post-bottling (1,2). In the present study, red and white table wines stored in a horizontal position for 17.5 (white wines) and 35 months (red wines), using natural cork stoppers, different types of microagglomerated cork stoppers and a synthetic one, were characterized. To achieve a holistic view of the changes that may have occurred during bottling, a set of analysis were implemented, namely, determination of volatile components by comprehensive gas chromatogra- phymass spectrometry with time of flight analyser (GC×GC-ToFMS), determination of phenolic profile by ultra-high-performance liquid chromatography, coupled with tandem mass spectrometry (UHPLC- DAD-MSn), sensorial analysis performed by a trained panel, and also determination of colour, acidity (total and volatile), SO₂ (free and total), and pH. The strategy used in this study provides new chemical data that allow evaluating the effect of the stopper among different type of wines. Physical-chemical and sensory analysis unveiled that the type of stopper modulates the characteristics of the wine, and its selection may be used as an oenological tool in the construction of the wine identity.

Acknowledgments: This work was developed within the scope of the projects LAQV-REQUIMTE (UIDB/50006/2020 and UIDP/50006/2020) and CICECO (UIDB/50011/2020, UIDP/50011/2020 & LA/P/0006/2020), financed by national funds through the FCT/MEC (PID-DAC). FCT is also acknowledged for the research contract under Scientific Employment Stimulus to S. Santos (2021.03348.CEECIND).

 

1. Azevedo J., Lopes P., Mateus N., Freitas V. Cork, a Natural Choice to Wine? Foods 2022, 11, 2638. https://doi.org/10.3390/foods11172638
2. Echave J., Barral M., Fraga-Corral M., Prieto M. A., Simal-Gandara J. Bottle Aging and Storage of Wines: A Review, Molecules 2021, 26, 713. https://doi.org/10.3390/molecules26030713

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

André Viana¹, Cátia Martins¹, Sónia A.O. Santos ², Armando J. D. Silvestre², José Pedro Machado², Sílvia M. Rocha¹

1. Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, Campus Universitário Santiago,3810-193 Aveiro, Portugal
2. Department of Chemistry & CICECO, University of Aveiro, Campus Universitário Santiago,3810-193 Aveiro, Portugal
3. MASILVA CORTIÇAS, Rua Central das Regadas Nº49, 4535-167 Mozelos, Portugal

Contact the author*

Keywords

wine storage, stoppers, volatile profile, phenolic profile

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ASSESSMENT OF ‘DOLCETTO’ GRAPES AND WINES FROM DIFFERENT AREAS OF OVADA DOCG

Dolcetto (Vitis vinifera L.) is one of the traditionally cultivated varieties in Piedmont (north-east Italy). Dolcetto wines have long been associated with local consumption and they are little known internationally. In particular, the Ovada area (south-east Piedmont), even if it represents a small share of the regional PDO Dolcetto production, is one of the oldest and vocated territory, giving wine also suitable for aging. In this study, the basic composition and phenolic content of Dolcetto grapes for Ovada DOCG wines have been investigated in three different vintages (2020-2022), as well as the main aspects of the derived commercial and experimental wines (basic parameters, phenolics, volatile compounds, sensory properties).

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.

DEVELOPMENT OF BIOPROSPECTING TOOLS FOR OENOLOGICAL APPLICATIONS

Wine production is a complex biochemical process that involves a heterogeneous microbiota consisting of different microorganisms such as yeasts, bacteria, and filamentous fungi. Among these microorganisms, yeasts play a predominant role in the chemistry of wine, as they actively participate in alcoholic fermentation, a biochemical process that transforms the sugars in grapes into ethanol and carbon dioxide while producing additional by-products. The quality of the final product is greatly influenced by the microbiota present in the grape berry, and the demand for indigenous yeast starters adapted to specific grape must and reflecting the biodiversity of a particular region is increasing. This supports the concept that indigenous yeast strains can be associated with a “terroir”.

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4

INSIGHTS ON THE ROLE OF GENES ON AROMA FORMATION OF WINES

Yeast secondary metabolism is a complex network of biochemical pathways and the genetic profile of the yeast carrying out the alcoholic fermentation is obviously important in the formation of the metabolites conferring specific odors to wine. The aim of the present research was to investigate the relative expression of genes involved in flavor compound production in eight different Saccharomyces cerevisiae strains.
Two commercial yeast strains Sc1 (S.cerevisiae x S.bayanus) and Sc2 (S.cerevisiae) and six indigenous S. cerevisiae strains (Sc3, Sc4, Sc5, Sc6, Sc7, Sc8) isolated during spontaneous fermentations were inoculated in Assyrtiko and Vidiano grape must.